| layer_permute {keras3} | R Documentation | 
Permutes the dimensions of the input according to a given pattern.
Description
Useful e.g. connecting RNNs and convnets.
Usage
layer_permute(object, dims, ...)
Arguments
| object | Object to compose the layer with. A tensor, array, or sequential model. | 
| dims | List of integers. Permutation pattern does not include the
batch dimension. Indexing starts at 1.
For instance,  | 
| ... | For forward/backward compatability. | 
Value
The return value depends on the value provided for the first argument.
If  object is:
- a - keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.
- a - keras_input(), then the output tensor from calling- layer(input)is returned.
-  NULLor missing, then aLayerinstance is returned.
Input Shape
Arbitrary.
Output Shape
Same as the input shape, but with the dimensions re-ordered according to the specified pattern.
Example
x <- layer_input(shape=c(10, 64)) y <- layer_permute(x, c(2, 1)) shape(y)
## shape(NA, 64, 10)
See Also
Other reshaping layers: 
layer_cropping_1d() 
layer_cropping_2d() 
layer_cropping_3d() 
layer_flatten() 
layer_repeat_vector() 
layer_reshape() 
layer_upsampling_1d() 
layer_upsampling_2d() 
layer_upsampling_3d() 
layer_zero_padding_1d() 
layer_zero_padding_2d() 
layer_zero_padding_3d() 
Other layers: 
Layer() 
layer_activation() 
layer_activation_elu() 
layer_activation_leaky_relu() 
layer_activation_parametric_relu() 
layer_activation_relu() 
layer_activation_softmax() 
layer_activity_regularization() 
layer_add() 
layer_additive_attention() 
layer_alpha_dropout() 
layer_attention() 
layer_average() 
layer_average_pooling_1d() 
layer_average_pooling_2d() 
layer_average_pooling_3d() 
layer_batch_normalization() 
layer_bidirectional() 
layer_category_encoding() 
layer_center_crop() 
layer_concatenate() 
layer_conv_1d() 
layer_conv_1d_transpose() 
layer_conv_2d() 
layer_conv_2d_transpose() 
layer_conv_3d() 
layer_conv_3d_transpose() 
layer_conv_lstm_1d() 
layer_conv_lstm_2d() 
layer_conv_lstm_3d() 
layer_cropping_1d() 
layer_cropping_2d() 
layer_cropping_3d() 
layer_dense() 
layer_depthwise_conv_1d() 
layer_depthwise_conv_2d() 
layer_discretization() 
layer_dot() 
layer_dropout() 
layer_einsum_dense() 
layer_embedding() 
layer_feature_space() 
layer_flatten() 
layer_flax_module_wrapper() 
layer_gaussian_dropout() 
layer_gaussian_noise() 
layer_global_average_pooling_1d() 
layer_global_average_pooling_2d() 
layer_global_average_pooling_3d() 
layer_global_max_pooling_1d() 
layer_global_max_pooling_2d() 
layer_global_max_pooling_3d() 
layer_group_normalization() 
layer_group_query_attention() 
layer_gru() 
layer_hashed_crossing() 
layer_hashing() 
layer_identity() 
layer_integer_lookup() 
layer_jax_model_wrapper() 
layer_lambda() 
layer_layer_normalization() 
layer_lstm() 
layer_masking() 
layer_max_pooling_1d() 
layer_max_pooling_2d() 
layer_max_pooling_3d() 
layer_maximum() 
layer_mel_spectrogram() 
layer_minimum() 
layer_multi_head_attention() 
layer_multiply() 
layer_normalization() 
layer_random_brightness() 
layer_random_contrast() 
layer_random_crop() 
layer_random_flip() 
layer_random_rotation() 
layer_random_translation() 
layer_random_zoom() 
layer_repeat_vector() 
layer_rescaling() 
layer_reshape() 
layer_resizing() 
layer_rnn() 
layer_separable_conv_1d() 
layer_separable_conv_2d() 
layer_simple_rnn() 
layer_spatial_dropout_1d() 
layer_spatial_dropout_2d() 
layer_spatial_dropout_3d() 
layer_spectral_normalization() 
layer_string_lookup() 
layer_subtract() 
layer_text_vectorization() 
layer_tfsm() 
layer_time_distributed() 
layer_torch_module_wrapper() 
layer_unit_normalization() 
layer_upsampling_1d() 
layer_upsampling_2d() 
layer_upsampling_3d() 
layer_zero_padding_1d() 
layer_zero_padding_2d() 
layer_zero_padding_3d() 
rnn_cell_gru() 
rnn_cell_lstm() 
rnn_cell_simple() 
rnn_cells_stack()