layer_normalization {keras3} | R Documentation |
A preprocessing layer that normalizes continuous features.
Description
This layer will shift and scale inputs into a distribution centered around
0 with standard deviation 1. It accomplishes this by precomputing the mean
and variance of the data, and calling (input - mean) / sqrt(var)
at
runtime.
The mean and variance values for the layer must be either supplied on
construction or learned via adapt()
. adapt()
will compute the mean and
variance of the data and store them as the layer's weights. adapt()
should
be called before fit()
, evaluate()
, or predict()
.
Usage
layer_normalization(
object,
axis = -1L,
mean = NULL,
variance = NULL,
invert = FALSE,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
axis |
Integer, list of integers, or NULL. The axis or axes that should
have a separate mean and variance for each index in the shape.
For example, if shape is |
mean |
The mean value(s) to use during normalization. The passed value(s)
will be broadcast to the shape of the kept axes above;
if the value(s) cannot be broadcast, an error will be raised when
this layer's |
variance |
The variance value(s) to use during normalization. The passed
value(s) will be broadcast to the shape of the kept axes above;
if the value(s) cannot be broadcast, an error will be raised when
this layer's |
invert |
If |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Examples
Calculate a global mean and variance by analyzing the dataset in adapt()
.
adapt_data <- op_array(c(1., 2., 3., 4., 5.), dtype='float32') input_data <- op_array(c(1., 2., 3.), dtype='float32') layer <- layer_normalization(axis = NULL) layer %>% adapt(adapt_data) layer(input_data)
## tf.Tensor([-1.4142135 -0.70710677 0. ], shape=(3), dtype=float32)
Calculate a mean and variance for each index on the last axis.
adapt_data <- op_array(rbind(c(0., 7., 4.), c(2., 9., 6.), c(0., 7., 4.), c(2., 9., 6.)), dtype='float32') input_data <- op_array(matrix(c(0., 7., 4.), nrow = 1), dtype='float32') layer <- layer_normalization(axis=-1) layer %>% adapt(adapt_data) layer(input_data)
## tf.Tensor([[-1. -1. -1.]], shape=(1, 3), dtype=float32)
Pass the mean and variance directly.
input_data <- op_array(rbind(1, 2, 3), dtype='float32') layer <- layer_normalization(mean=3., variance=2.) layer(input_data)
## tf.Tensor( ## [[-1.4142135 ] ## [-0.70710677] ## [ 0. ]], shape=(3, 1), dtype=float32)
Use the layer to de-normalize inputs (after adapting the layer).
adapt_data <- op_array(rbind(c(0., 7., 4.), c(2., 9., 6.), c(0., 7., 4.), c(2., 9., 6.)), dtype='float32') input_data <- op_array(c(1., 2., 3.), dtype='float32') layer <- layer_normalization(axis=-1, invert=TRUE) layer %>% adapt(adapt_data) layer(input_data)
## tf.Tensor([[ 2. 10. 8.]], shape=(1, 3), dtype=float32)
See Also
Other numerical features preprocessing layers:
layer_discretization()
Other preprocessing layers:
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()