layer_multi_head_attention {keras3}R Documentation

Multi Head Attention layer.

Description

This is an implementation of multi-headed attention as described in the paper "Attention is all you Need" Vaswani et al., 2017. If query, ⁠key,⁠ value are the same, then this is self-attention. Each timestep in query attends to the corresponding sequence in key, and returns a fixed-width vector.

This layer first projects query, key and value. These are (effectively) a list of tensors of length num_attention_heads, where the corresponding shapes are ⁠(batch_size, <query dimensions>, key_dim)⁠, ⁠(batch_size, <key/value dimensions>, key_dim)⁠, ⁠(batch_size, <key/value dimensions>, value_dim)⁠.

Then, the query and key tensors are dot-producted and scaled. These are softmaxed to obtain attention probabilities. The value tensors are then interpolated by these probabilities, then concatenated back to a single tensor.

Finally, the result tensor with the last dimension as value_dim can take a linear projection and return.

Usage

layer_multi_head_attention(
  inputs,
  num_heads,
  key_dim,
  value_dim = NULL,
  dropout = 0,
  use_bias = TRUE,
  output_shape = NULL,
  attention_axes = NULL,
  kernel_initializer = "glorot_uniform",
  bias_initializer = "zeros",
  kernel_regularizer = NULL,
  bias_regularizer = NULL,
  activity_regularizer = NULL,
  kernel_constraint = NULL,
  bias_constraint = NULL,
  seed = NULL,
  ...
)

Arguments

inputs

see description

num_heads

Number of attention heads.

key_dim

Size of each attention head for query and key.

value_dim

Size of each attention head for value.

dropout

Dropout probability.

use_bias

Boolean, whether the dense layers use bias vectors/matrices.

output_shape

The expected shape of an output tensor, besides the batch and sequence dims. If not specified, projects back to the query feature dim (the query input's last dimension).

attention_axes

axes over which the attention is applied. NULL means attention over all axes, but batch, heads, and features.

kernel_initializer

Initializer for dense layer kernels.

bias_initializer

Initializer for dense layer biases.

kernel_regularizer

Regularizer for dense layer kernels.

bias_regularizer

Regularizer for dense layer biases.

activity_regularizer

Regularizer for dense layer activity.

kernel_constraint

Constraint for dense layer kernels.

bias_constraint

Constraint for dense layer kernels.

seed

Optional integer to seed the dropout layer.

...

For forward/backward compatability.

Value

The return value depends on the value provided for the first argument. If object is:

Call Arguments

Call return

Properties

A MultiHeadAttention Layer instance has the following additional read-only properties:

See Also

Other attention layers:
layer_additive_attention()
layer_attention()
layer_group_query_attention()

Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()


[Package keras3 version 1.1.0 Index]