layer_max_pooling_3d {keras3} | R Documentation |
Max pooling operation for 3D data (spatial or spatio-temporal).
Description
Downsamples the input along its spatial dimensions (depth, height, and
width) by taking the maximum value over an input window (of size defined by
pool_size
) for each channel of the input. The window is shifted by
strides
along each dimension.
Usage
layer_max_pooling_3d(
object,
pool_size = list(2L, 2L, 2L),
strides = NULL,
padding = "valid",
data_format = NULL,
name = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
pool_size |
int or list of 3 integers, factors by which to downscale (dim1, dim2, dim3). If only one integer is specified, the same window length will be used for all dimensions. |
strides |
int or list of 3 integers, or |
padding |
string, either |
data_format |
string, either |
name |
String, name for the object |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Input Shape
If
data_format="channels_last"
: 5D tensor with shape:(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
If
data_format="channels_first"
: 5D tensor with shape:(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
Output Shape
If
data_format="channels_last"
: 5D tensor with shape:(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)
If
data_format="channels_first"
: 5D tensor with shape:(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)
Examples
depth <- 30 height <- 30 width <- 30 channels <- 3 inputs <- layer_input(shape=c(depth, height, width, channels)) layer <- layer_max_pooling_3d(pool_size=3) outputs <- inputs |> layer() outputs
## <KerasTensor shape=(None, 10, 10, 10, 3), dtype=float32, sparse=False, name=keras_tensor_1>
See Also
Other pooling layers:
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_max_pooling_1d()
layer_max_pooling_2d()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()