layer_jax_model_wrapper {keras3} | R Documentation |
Keras Layer that wraps a JAX model.
Description
This layer enables the use of JAX components within Keras when using JAX as the backend for Keras.
Usage
layer_jax_model_wrapper(
object,
call_fn,
init_fn = NULL,
params = NULL,
state = NULL,
seed = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
call_fn |
The function to call the model. See description above for the list of arguments it takes and the outputs it returns. |
init_fn |
the function to call to initialize the model. See description
above for the list of arguments it takes and the ouputs it returns.
If |
params |
A |
state |
A |
seed |
Seed for random number generator. Optional. |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Model function
This layer accepts JAX models in the form of a function, call_fn()
, which
must take the following arguments with these exact names:
-
params
: trainable parameters of the model. -
state
(optional): non-trainable state of the model. Can be omitted if the model has no non-trainable state. -
rng
(optional): ajax.random.PRNGKey
instance. Can be omitted if the model does not need RNGs, neither during training nor during inference. -
inputs
: inputs to the model, a JAX array or aPyTree
of arrays. -
training
(optional): an argument specifying if we're in training mode or inference mode,TRUE
is passed in training mode. Can be omitted if the model behaves the same in training mode and inference mode.
The inputs
argument is mandatory. Inputs to the model must be provided via
a single argument. If the JAX model takes multiple inputs as separate
arguments, they must be combined into a single structure, for instance in a
tuple()
or a dict()
.
Model weights initialization
The initialization of the params
and state
of the model can be handled
by this layer, in which case the init_fn()
argument must be provided. This
allows the model to be initialized dynamically with the right shape.
Alternatively, and if the shape is known, the params
argument and
optionally the state
argument can be used to create an already initialized
model.
The init_fn()
function, if provided, must take the following arguments with
these exact names:
-
rng
: ajax.random.PRNGKey
instance. -
inputs
: a JAX array or aPyTree
of arrays with placeholder values to provide the shape of the inputs. -
training
(optional): an argument specifying if we're in training mode or inference mode.True
is always passed toinit_fn
. Can be omitted regardless of whethercall_fn
has atraining
argument.
Models with non-trainable state
For JAX models that have non-trainable state:
-
call_fn()
must have astate
argument -
call_fn()
must return atuple()
containing the outputs of the model and the new non-trainable state of the model -
init_fn()
must return atuple()
containing the initial trainable params of the model and the initial non-trainable state of the model.
This code shows a possible combination of call_fn()
and init_fn()
signatures
for a model with non-trainable state. In this example, the model has a
training
argument and an rng
argument in call_fn()
.
stateful_call <- function(params, state, rng, inputs, training) { outputs <- .... new_state <- .... tuple(outputs, new_state) } stateful_init <- function(rng, inputs) { initial_params <- .... initial_state <- .... tuple(initial_params, initial_state) }
Models without non-trainable state
For JAX models with no non-trainable state:
-
call_fn()
must not have astate
argument -
call_fn()
must return only the outputs of the model -
init_fn()
must return only the initial trainable params of the model.
This code shows a possible combination of call_fn()
and init_fn()
signatures
for a model without non-trainable state. In this example, the model does not
have a training
argument and does not have an rng
argument in call_fn()
.
stateful_call <- function(pparams, inputs) { outputs <- .... outputs } stateful_init <- function(rng, inputs) { initial_params <- .... initial_params }
Conforming to the required signature
If a model has a different signature than the one required by JaxLayer
,
one can easily write a wrapper method to adapt the arguments. This example
shows a model that has multiple inputs as separate arguments, expects
multiple RNGs in a dict
, and has a deterministic
argument with the
opposite meaning of training
. To conform, the inputs are combined in a
single structure using a tuple
, the RNG is split and used the populate the
expected dict
, and the Boolean flag is negated:
jax <- import("jax") my_model_fn <- function(params, rngs, input1, input2, deterministic) { .... if (!deterministic) { dropout_rng <- rngs$dropout keep <- jax$random$bernoulli(dropout_rng, dropout_rate, x$shape) x <- jax$numpy$where(keep, x / dropout_rate, 0) .... } .... return(outputs) } my_model_wrapper_fn <- function(params, rng, inputs, training) { c(input1, input2) %<-% inputs c(rng1, rng2) %<-% jax$random$split(rng) rngs <- list(dropout = rng1, preprocessing = rng2) deterministic <- !training my_model_fn(params, rngs, input1, input2, deterministic) } keras_layer <- layer_jax_model_wrapper(call_fn = my_model_wrapper_fn, params = initial_params)
Usage with Haiku modules
JaxLayer
enables the use of Haiku
components in the form of
haiku.Module
.
This is achieved by transforming the module per the Haiku pattern and then
passing module.apply
in the call_fn
parameter and module.init
in the
init_fn
parameter if needed.
If the model has non-trainable state, it should be transformed with
haiku.transform_with_state
.
If the model has no non-trainable state, it should be transformed with
haiku.transform
.
Additionally, and optionally, if the module does not use RNGs in "apply", it
can be transformed with
haiku.without_apply_rng
.
The following example shows how to create a JaxLayer
from a Haiku module
that uses random number generators via hk.next_rng_key()
and takes a
training positional argument:
# reticulate::py_install("haiku", "r-keras") hk <- import("haiku") MyHaikuModule(hk$Module) \%py_class\% { `__call__` <- \(self, x, training) { x <- hk$Conv2D(32L, tuple(3L, 3L))(x) x <- jax$nn$relu(x) x <- hk$AvgPool(tuple(1L, 2L, 2L, 1L), tuple(1L, 2L, 2L, 1L), "VALID")(x) x <- hk$Flatten()(x) x <- hk$Linear(200L)(x) if (training) x <- hk$dropout(rng = hk$next_rng_key(), rate = 0.3, x = x) x <- jax$nn$relu(x) x <- hk$Linear(10L)(x) x <- jax$nn$softmax(x) x } } my_haiku_module_fn <- function(inputs, training) { module <- MyHaikuModule() module(inputs, training) } transformed_module <- hk$transform(my_haiku_module_fn) keras_layer <- layer_jax_model_wrapper(call_fn = transformed_module$apply, init_fn = transformed_module$init)
See Also
Other wrapping layers:
layer_flax_module_wrapper()
layer_torch_module_wrapper()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()