layer_integer_lookup {keras3} | R Documentation |
A preprocessing layer that maps integers to (possibly encoded) indices.
Description
This layer maps a set of arbitrary integer input tokens into indexed integer
output via a table-based vocabulary lookup. The layer's output indices will
be contiguously arranged up to the maximum vocab size, even if the input
tokens are non-continguous or unbounded. The layer supports multiple options
for encoding the output via output_mode
, and has optional support for
out-of-vocabulary (OOV) tokens and masking.
The vocabulary for the layer must be either supplied on construction or
learned via adapt()
. During adapt()
, the layer will analyze a data set,
determine the frequency of individual integer tokens, and create a
vocabulary from them. If the vocabulary is capped in size, the most frequent
tokens will be used to create the vocabulary and all others will be treated
as OOV.
There are two possible output modes for the layer. When output_mode
is
"int"
, input integers are converted to their index in the vocabulary (an
integer). When output_mode
is "multi_hot"
, "count"
, or "tf_idf"
,
input integers are encoded into an array where each dimension corresponds to
an element in the vocabulary.
The vocabulary can optionally contain a mask token as well as an OOV token
(which can optionally occupy multiple indices in the vocabulary, as set
by num_oov_indices
).
The position of these tokens in the vocabulary is fixed. When output_mode
is "int"
, the vocabulary will begin with the mask token at index 0,
followed by OOV indices, followed by the rest of the vocabulary. When
output_mode
is "multi_hot"
, "count"
, or "tf_idf"
the vocabulary will
begin with OOV indices and instances of the mask token will be dropped.
Note: This layer uses TensorFlow internally. It cannot be used as part of the compiled computation graph of a model with any backend other than TensorFlow. It can however be used with any backend when running eagerly. It can also always be used as part of an input preprocessing pipeline with any backend (outside the model itself), which is how we recommend to use this layer.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
Usage
layer_integer_lookup(
object,
max_tokens = NULL,
num_oov_indices = 1L,
mask_token = NULL,
oov_token = -1L,
vocabulary = NULL,
vocabulary_dtype = "int64",
idf_weights = NULL,
invert = FALSE,
output_mode = "int",
sparse = FALSE,
pad_to_max_tokens = FALSE,
name = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
max_tokens |
Maximum size of the vocabulary for this layer. This should
only be specified when adapting the vocabulary or when setting
|
num_oov_indices |
The number of out-of-vocabulary tokens to use.
If this value is more than 1, OOV inputs are modulated to
determine their OOV value.
If this value is 0, OOV inputs will cause an error when calling
the layer. Defaults to |
mask_token |
An integer token that represents masked inputs. When
|
oov_token |
Only used when |
vocabulary |
Optional. Either an array of integers or a string path to a
text file. If passing an array, can pass a list, list,
1D NumPy array, or 1D tensor containing the integer vocbulary terms.
If passing a file path, the file should contain one line per term
in the vocabulary. If this argument is set,
there is no need to |
vocabulary_dtype |
The dtype of the vocabulary terms, for example
|
idf_weights |
Only valid when |
invert |
Only valid when |
output_mode |
Specification for the output of the layer. Values can be
|
sparse |
Boolean. Only applicable to |
pad_to_max_tokens |
Only applicable when |
name |
String, name for the object |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Examples
Creating a lookup layer with a known vocabulary
This example creates a lookup layer with a pre-existing vocabulary.
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- op_array(rbind(c(12, 1138, 42), c(42, 1000, 36))) # Note OOV tokens out <- data |> layer_integer_lookup(vocabulary = vocab) out
## tf.Tensor( ## [[1 3 4] ## [4 0 2]], shape=(2, 3), dtype=int64)
Creating a lookup layer with an adapted vocabulary
This example creates a lookup layer and generates the vocabulary by analyzing the dataset.
data <- op_array(rbind(c(12, 1138, 42), c(42, 1000, 36))) # Note OOV tokens layer <- layer_integer_lookup() layer |> adapt(data) layer |> get_vocabulary() |> str()
## List of 6 ## $ : int -1 ## $ : num 42 ## $ : num 1138 ## $ : num 1000 ## $ : num 36 ## $ : num 12
Note that the OOV token -1 have been added to the vocabulary. The remaining tokens are sorted by frequency (42, which has 2 occurrences, is first) then by inverse sort order.
layer(data)
## tf.Tensor( ## [[5 2 1] ## [1 3 4]], shape=(2, 3), dtype=int64)
Lookups with multiple OOV indices
This example demonstrates how to use a lookup layer with multiple OOV indices. When a layer is created with more than one OOV index, any OOV tokens are hashed into the number of OOV buckets, distributing OOV tokens in a deterministic fashion across the set.
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- op_array(rbind(c(12, 1138, 42), c(37, 1000, 36))) # Note OOV tokens out <- data |> layer_integer_lookup(vocabulary = vocab, num_oov_indices = 2) out
## tf.Tensor( ## [[2 4 5] ## [1 0 3]], shape=(2, 3), dtype=int64)
Note that the output for OOV token 37 is 1, while the output for OOV token 1000 is 0. The in-vocab terms have their output index increased by 1 from earlier examples (12 maps to 2, etc) in order to make space for the extra OOV token.
One-hot output
Configure the layer with output_mode='one_hot'
. Note that the first
num_oov_indices
dimensions in the ont_hot encoding represent OOV values.
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- op_array(c(12, 36, 1138, 42, 7), 'int32') # Note OOV tokens layer <- layer_integer_lookup(vocabulary = vocab, output_mode = 'one_hot') layer(data)
## tf.Tensor( ## [[0 1 0 0 0] ## [0 0 1 0 0] ## [0 0 0 1 0] ## [0 0 0 0 1] ## [1 0 0 0 0]], shape=(5, 5), dtype=int64)
Multi-hot output
Configure the layer with output_mode = 'multi_hot'
. Note that the first
num_oov_indices
dimensions in the multi_hot encoding represent OOV tokens
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- op_array(rbind(c(12, 1138, 42, 42), c(42, 7, 36, 7)), "int64") # Note OOV tokens layer <- layer_integer_lookup(vocabulary = vocab, output_mode = 'multi_hot') layer(data)
## tf.Tensor( ## [[0 1 0 1 1] ## [1 0 1 0 1]], shape=(2, 5), dtype=int64)
Token count output
Configure the layer with output_mode='count'
. As with multi_hot output,
the first num_oov_indices
dimensions in the output represent OOV tokens.
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- rbind(c(12, 1138, 42, 42), c(42, 7, 36, 7)) |> op_array("int64") layer <- layer_integer_lookup(vocabulary = vocab, output_mode = 'count') layer(data)
## tf.Tensor( ## [[0 1 0 1 2] ## [2 0 1 0 1]], shape=(2, 5), dtype=int64)
TF-IDF output
Configure the layer with output_mode='tf_idf'
. As with multi_hot output,
the first num_oov_indices
dimensions in the output represent OOV tokens.
Each token bin will output token_count * idf_weight
, where the idf weights
are the inverse document frequency weights per token. These should be
provided along with the vocabulary. Note that the idf_weight
for OOV
tokens will default to the average of all idf weights passed in.
vocab <- c(12, 36, 1138, 42) |> as.integer() idf_weights <- c(0.25, 0.75, 0.6, 0.4) data <- rbind(c(12, 1138, 42, 42), c(42, 7, 36, 7)) |> op_array("int64") layer <- layer_integer_lookup(output_mode = 'tf_idf', vocabulary = vocab, idf_weights = idf_weights) layer(data)
## tf.Tensor( ## [[0. 0.25 0. 0.6 0.8 ] ## [1. 0. 0.75 0. 0.4 ]], shape=(2, 5), dtype=float32)
To specify the idf weights for oov tokens, you will need to pass the entire vocabulary including the leading oov token.
vocab <- c(-1, 12, 36, 1138, 42) |> as.integer() idf_weights <- c(0.9, 0.25, 0.75, 0.6, 0.4) data <- rbind(c(12, 1138, 42, 42), c(42, 7, 36, 7)) |> op_array("int64") layer <- layer_integer_lookup(output_mode = 'tf_idf', vocabulary = vocab, idf_weights = idf_weights) layer(data)
## tf.Tensor( ## [[0. 0.25 0. 0.6 0.8 ] ## [1.8 0. 0.75 0. 0.4 ]], shape=(2, 5), dtype=float32)
When adapting the layer in "tf_idf"
mode, each input sample will
be considered a document, and IDF weight per token will be
calculated as:
log(1 + num_documents / (1 + token_document_count))
.
Inverse lookup
This example demonstrates how to map indices to tokens using this layer.
(You can also use adapt()
with inverse = TRUE
, but for simplicity we'll
pass the vocab in this example.)
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- op_array(c(1, 3, 4, 4, 0, 2)) |> op_reshape(c(2,-1)) |> op_cast("int32") layer <- layer_integer_lookup(vocabulary = vocab, invert = TRUE) layer(data)
## tf.Tensor( ## [[ 12 1138 42] ## [ 42 -1 36]], shape=(2, 3), dtype=int64)
Note that the first index correspond to the oov token by default.
Forward and inverse lookup pairs
This example demonstrates how to use the vocabulary of a standard lookup layer to create an inverse lookup layer.
vocab <- c(12, 36, 1138, 42) |> as.integer() data <- op_array(rbind(c(12, 1138, 42), c(42, 1000, 36)), "int32") layer <- layer_integer_lookup(vocabulary = vocab) i_layer <- layer_integer_lookup(vocabulary = get_vocabulary(layer), invert = TRUE) int_data <- layer(data) i_layer(int_data)
## tf.Tensor( ## [[ 12 1138 42] ## [ 42 -1 36]], shape=(2, 3), dtype=int64)
In this example, the input token 1000 resulted in an output of -1, since
1000 was not in the vocabulary - it got represented as an OOV, and all OOV
tokens are returned as -1 in the inverse layer. Also, note that for the
inverse to work, you must have already set the forward layer vocabulary
either directly or via adapt()
before calling get_vocabulary()
.
See Also
Other categorical features preprocessing layers:
layer_category_encoding()
layer_hashed_crossing()
layer_hashing()
layer_string_lookup()
Other preprocessing layers:
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()