layer_gru {keras3} | R Documentation |
Gated Recurrent Unit - Cho et al. 2014.
Description
Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation when using the TensorFlow backend.
The requirements to use the cuDNN implementation are:
-
activation
==tanh
-
recurrent_activation
==sigmoid
-
dropout
== 0 andrecurrent_dropout
== 0 -
unroll
isFALSE
-
use_bias
isTRUE
-
reset_after
isTRUE
Inputs, if use masking, are strictly right-padded.
Eager execution is enabled in the outermost context.
There are two variants of the GRU implementation. The default one is based on v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for kernel
and
recurrent_kernel
. To use this variant, set reset_after=TRUE
and
recurrent_activation='sigmoid'
.
For example:
inputs <- random_uniform(c(32, 10, 8)) outputs <- inputs |> layer_gru(4) shape(outputs)
## shape(32, 4)
# (32, 4) gru <- layer_gru(, 4, return_sequences = TRUE, return_state = TRUE) c(whole_sequence_output, final_state) %<-% gru(inputs) shape(whole_sequence_output)
## shape(32, 10, 4)
shape(final_state)
## shape(32, 4)
Usage
layer_gru(
object,
units,
activation = "tanh",
recurrent_activation = "sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
seed = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
reset_after = TRUE,
use_cudnn = "auto",
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
units |
Positive integer, dimensionality of the output space. |
activation |
Activation function to use.
Default: hyperbolic tangent ( |
recurrent_activation |
Activation function to use
for the recurrent step.
Default: sigmoid ( |
use_bias |
Boolean, (default |
kernel_initializer |
Initializer for the |
recurrent_initializer |
Initializer for the |
bias_initializer |
Initializer for the bias vector. Default: |
kernel_regularizer |
Regularizer function applied to the |
recurrent_regularizer |
Regularizer function applied to the
|
bias_regularizer |
Regularizer function applied to the bias vector.
Default: |
activity_regularizer |
Regularizer function applied to the output of the
layer (its "activation"). Default: |
kernel_constraint |
Constraint function applied to the |
recurrent_constraint |
Constraint function applied to the
|
bias_constraint |
Constraint function applied to the bias vector.
Default: |
dropout |
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. |
recurrent_dropout |
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. |
seed |
Random seed for dropout. |
return_sequences |
Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: |
return_state |
Boolean. Whether to return the last state in addition
to the output. Default: |
go_backwards |
Boolean (default |
stateful |
Boolean (default: |
unroll |
Boolean (default: |
reset_after |
GRU convention (whether to apply reset gate after or
before matrix multiplication). |
use_cudnn |
Whether to use a cuDNN-backed implementation. |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Call Arguments
-
inputs
: A 3D tensor, with shape(batch, timesteps, feature)
. -
mask
: Binary tensor of shape(samples, timesteps)
indicating whether a given timestep should be masked (optional). An individualTRUE
entry indicates that the corresponding timestep should be utilized, while aFALSE
entry indicates that the corresponding timestep should be ignored. Defaults toNULL
. -
training
: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant ifdropout
orrecurrent_dropout
is used (optional). Defaults toNULL
. -
initial_state
: List of initial state tensors to be passed to the first call of the cell (optional,NULL
causes creation of zero-filled initial state tensors). Defaults toNULL
.
See Also
Other gru rnn layers:
rnn_cell_gru()
Other rnn layers:
layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_lstm()
layer_rnn()
layer_simple_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()