layer_embedding {keras3} | R Documentation |
Turns positive integers (indexes) into dense vectors of fixed size.
Description
e.g. rbind(4L, 20L)
\rightarrow
rbind(c(0.25, 0.1), c(0.6, -0.2))
This layer can only be used on positive integer inputs of a fixed range.
Usage
layer_embedding(
object,
input_dim,
output_dim,
embeddings_initializer = "uniform",
embeddings_regularizer = NULL,
embeddings_constraint = NULL,
mask_zero = FALSE,
weights = NULL,
lora_rank = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
input_dim |
Integer. Size of the vocabulary, i.e. maximum integer index + 1. |
output_dim |
Integer. Dimension of the dense embedding. |
embeddings_initializer |
Initializer for the |
embeddings_regularizer |
Regularizer function applied to
the |
embeddings_constraint |
Constraint function applied to
the |
mask_zero |
Boolean, whether or not the input value 0 is a special
"padding" value that should be masked out.
This is useful when using recurrent layers which
may take variable length input. If this is |
weights |
Optional floating-point matrix of size
|
lora_rank |
Optional integer. If set, the layer's forward pass
will implement LoRA (Low-Rank Adaptation)
with the provided rank. LoRA sets the layer's embeddings
matrix to non-trainable and replaces it with a delta over the
original matrix, obtained via multiplying two lower-rank
trainable matrices. This can be useful to reduce the
computation cost of fine-tuning large embedding layers.
You can also enable LoRA on an existing
|
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Example
model <- keras_model_sequential() |> layer_embedding(1000, 64) # The model will take as input an integer matrix of size (batch,input_length), # and the largest integer (i.e. word index) in the input # should be no larger than 999 (vocabulary size). # Now model$output_shape is (NA, 10, 64), where `NA` is the batch # dimension. input_array <- random_integer(shape = c(32, 10), minval = 0, maxval = 1000) model |> compile('rmsprop', 'mse') output_array <- model |> predict(input_array, verbose = 0) dim(output_array) # (32, 10, 64)
## [1] 32 10 64
Input Shape
2D tensor with shape: (batch_size, input_length)
.
Output Shape
3D tensor with shape: (batch_size, input_length, output_dim)
.
Methods
-
enable_lora( rank, a_initializer = 'he_uniform', b_initializer = 'zeros' )
-
quantize(mode)
-
quantized_build(input_shape, mode)
-
quantized_call(inputs)
Readonly properties:
-
embeddings
See Also
Other core layers:
layer_dense()
layer_einsum_dense()
layer_identity()
layer_lambda()
layer_masking()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()