layer_depthwise_conv_2d {keras3} | R Documentation |
2D depthwise convolution layer.
Description
Depthwise convolution is a type of convolution in which each input channel is convolved with a different kernel (called a depthwise kernel). You can understand depthwise convolution as the first step in a depthwise separable convolution.
It is implemented via the following steps:
Split the input into individual channels.
Convolve each channel with an individual depthwise kernel with
depth_multiplier
output channels.Concatenate the convolved outputs along the channels axis.
Unlike a regular 2D convolution, depthwise convolution does not mix information across different input channels.
The depth_multiplier
argument determines how many filters are applied to
one input channel. As such, it controls the amount of output channels that
are generated per input channel in the depthwise step.
Usage
layer_depthwise_conv_2d(
object,
kernel_size,
strides = list(1L, 1L),
padding = "valid",
depth_multiplier = 1L,
data_format = NULL,
dilation_rate = list(1L, 1L),
activation = NULL,
use_bias = TRUE,
depthwise_initializer = "glorot_uniform",
bias_initializer = "zeros",
depthwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
bias_constraint = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
kernel_size |
int or list of 2 integer, specifying the size of the depthwise convolution window. |
strides |
int or list of 2 integer, specifying the stride length
of the depthwise convolution. |
padding |
string, either |
depth_multiplier |
The number of depthwise convolution output channels
for each input channel. The total number of depthwise convolution
output channels will be equal to |
data_format |
string, either |
dilation_rate |
int or list of 2 integers, specifying the dilation rate to use for dilated convolution. |
activation |
Activation function. If |
use_bias |
bool, if |
depthwise_initializer |
Initializer for the convolution kernel.
If |
bias_initializer |
Initializer for the bias vector. If |
depthwise_regularizer |
Optional regularizer for the convolution kernel. |
bias_regularizer |
Optional regularizer for the bias vector. |
activity_regularizer |
Optional regularizer function for the output. |
depthwise_constraint |
Optional projection function to be applied to the
kernel after being updated by an |
bias_constraint |
Optional projection function to be applied to the
bias after being updated by an |
... |
For forward/backward compatability. |
Value
A 4D tensor representing
activation(depthwise_conv2d(inputs, kernel) + bias)
.
Input Shape
If
data_format="channels_last"
: A 4D tensor with shape:(batch_size, height, width, channels)
If
data_format="channels_first"
: A 4D tensor with shape:(batch_size, channels, height, width)
Output Shape
If
data_format="channels_last"
: A 4D tensor with shape:(batch_size, new_height, new_width, channels * depth_multiplier)
If
data_format="channels_first"
: A 4D tensor with shape:(batch_size, channels * depth_multiplier, new_height, new_width)
Raises
ValueError: when both strides > 1
and dilation_rate > 1
.
Example
x <- random_uniform(c(4, 10, 10, 12)) y <- x |> layer_depthwise_conv_2d(3, 3, activation = 'relu') shape(y)
## shape(4, 3, 3, 12)
See Also
Other convolutional layers:
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_depthwise_conv_1d()
layer_separable_conv_1d()
layer_separable_conv_2d()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()