layer_cropping_3d {keras3} | R Documentation |
Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Description
Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Usage
layer_cropping_3d(
object,
cropping = list(list(1L, 1L), list(1L, 1L), list(1L, 1L)),
data_format = NULL,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
cropping |
Int, or list of 3 ints, or list of 3 lists of 2 ints.
|
data_format |
A string, one of |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Example
input_shape <- c(2, 28, 28, 10, 3) x <- input_shape %>% { op_reshape(seq(prod(.)), .) } y <- x |> layer_cropping_3d(cropping = c(2, 4, 2)) shape(y)
## shape(2, 24, 20, 6, 3)
Input Shape
5D tensor with shape:
If
data_format
is"channels_last"
:(batch_size, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, channels)
If
data_format
is"channels_first"
:(batch_size, channels, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)
Output Shape
5D tensor with shape:
If
data_format
is"channels_last"
:(batch_size, first_cropped_axis, second_cropped_axis, third_cropped_axis, channels)
If
data_format
is"channels_first"
:(batch_size, channels, first_cropped_axis, second_cropped_axis, third_cropped_axis)
See Also
Other reshaping layers:
layer_cropping_1d()
layer_cropping_2d()
layer_flatten()
layer_permute()
layer_repeat_vector()
layer_reshape()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()