layer_conv_lstm_2d {keras3} | R Documentation |
2D Convolutional LSTM.
Description
Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.
Usage
layer_conv_lstm_2d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid",
data_format = NULL,
dilation_rate = 1L,
activation = "tanh",
recurrent_activation = "sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
seed = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
...,
unroll = NULL
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
filters |
int, the dimension of the output space (the number of filters in the convolution). |
kernel_size |
int or tuple/list of 2 integers, specifying the size of the convolution window. |
strides |
int or tuple/list of 2 integers, specifying the stride length
of the convolution. |
padding |
string, |
data_format |
string, either |
dilation_rate |
int or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. |
activation |
Activation function to use. By default hyperbolic tangent
activation function is applied ( |
recurrent_activation |
Activation function to use for the recurrent step. |
use_bias |
Boolean, whether the layer uses a bias vector. |
kernel_initializer |
Initializer for the |
recurrent_initializer |
Initializer for the |
bias_initializer |
Initializer for the bias vector. |
unit_forget_bias |
Boolean. If |
kernel_regularizer |
Regularizer function applied to the |
recurrent_regularizer |
Regularizer function applied to the
|
bias_regularizer |
Regularizer function applied to the bias vector. |
activity_regularizer |
Regularizer function applied to. |
kernel_constraint |
Constraint function applied to the |
recurrent_constraint |
Constraint function applied to the
|
bias_constraint |
Constraint function applied to the bias vector. |
dropout |
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. |
recurrent_dropout |
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. |
seed |
Random seed for dropout. |
return_sequences |
Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: |
return_state |
Boolean. Whether to return the last state in addition
to the output. Default: |
go_backwards |
Boolean (default: |
stateful |
Boolean (default FALSE). If |
... |
For forward/backward compatability. |
unroll |
Boolean (default: |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Call Arguments
-
inputs
: A 5D tensor. -
mask
: Binary tensor of shape(samples, timesteps)
indicating whether a given timestep should be masked. -
training
: Python boolean indicating whether the layer should behave in training mode or in inference mode. This is only relevant ifdropout
orrecurrent_dropout
are set. -
initial_state
: List of initial state tensors to be passed to the first call of the cell.
Input Shape
If
data_format='channels_first'
: 5D tensor with shape:(samples, time, channels, rows, cols)
If
data_format='channels_last'
: 5D tensor with shape:(samples, time, rows, cols, channels)
Output Shape
If
return_state
: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each 4D tensor with shape:(samples, filters, new_rows, new_cols)
ifdata_format='channels_first'
or shape:(samples, new_rows, new_cols, filters)
ifdata_format='channels_last'
.rows
andcols
values might have changed due to padding.If
return_sequences
: 5D tensor with shape:(samples, timesteps, filters, new_rows, new_cols)
if data_format='channels_first' or shape:(samples, timesteps, new_rows, new_cols, filters)
ifdata_format='channels_last'
.Else, 4D tensor with shape:
(samples, filters, new_rows, new_cols)
ifdata_format='channels_first'
or shape:(samples, new_rows, new_cols, filters)
ifdata_format='channels_last'
.
References
-
Shi et al., 2015 (the current implementation does not include the feedback loop on the cells output).
See Also
Other rnn layers:
layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_rnn()
layer_simple_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()