| layer_conv_1d {keras3} | R Documentation | 
1D convolution layer (e.g. temporal convolution).
Description
This layer creates a convolution kernel that is convolved with the layer
input over a single spatial (or temporal) dimension to produce a tensor of
outputs. If use_bias is TRUE, a bias vector is created and added to the
outputs. Finally, if activation is not NULL, it is applied to the
outputs as well.
Usage
layer_conv_1d(
  object,
  filters,
  kernel_size,
  strides = 1L,
  padding = "valid",
  data_format = NULL,
  dilation_rate = 1L,
  groups = 1L,
  activation = NULL,
  use_bias = TRUE,
  kernel_initializer = "glorot_uniform",
  bias_initializer = "zeros",
  kernel_regularizer = NULL,
  bias_regularizer = NULL,
  activity_regularizer = NULL,
  kernel_constraint = NULL,
  bias_constraint = NULL,
  ...
)
Arguments
| object | Object to compose the layer with. A tensor, array, or sequential model. | 
| filters | int, the dimension of the output space (the number of filters in the convolution). | 
| kernel_size | int or list of 1 integer, specifying the size of the convolution window. | 
| strides | int or list of 1 integer, specifying the stride length
of the convolution.  | 
| padding | string,  | 
| data_format | string, either  | 
| dilation_rate | int or list of 1 integers, specifying the dilation rate to use for dilated convolution. | 
| groups | A positive int specifying the number of groups in which the
input is split along the channel axis. Each group is convolved
separately with  | 
| activation | Activation function. If  | 
| use_bias | bool, if  | 
| kernel_initializer | Initializer for the convolution kernel. If  | 
| bias_initializer | Initializer for the bias vector. If  | 
| kernel_regularizer | Optional regularizer for the convolution kernel. | 
| bias_regularizer | Optional regularizer for the bias vector. | 
| activity_regularizer | Optional regularizer function for the output. | 
| kernel_constraint | Optional projection function to be applied to the
kernel after being updated by an  | 
| bias_constraint | Optional projection function to be applied to the
bias after being updated by an  | 
| ... | For forward/backward compatability. | 
Value
A 3D tensor representing activation(conv1d(inputs, kernel) + bias).
Input Shape
- If - data_format="channels_last": A 3D tensor with shape:- (batch_shape, steps, channels)
- If - data_format="channels_first": A 3D tensor with shape:- (batch_shape, channels, steps)
Output Shape
- If - data_format="channels_last": A 3D tensor with shape:- (batch_shape, new_steps, filters)
- If - data_format="channels_first": A 3D tensor with shape:- (batch_shape, filters, new_steps)
Raises
ValueError: when both strides > 1 and dilation_rate > 1.
Example
# The inputs are 128-length vectors with 10 timesteps, and the # batch size is 4. x <- random_uniform(c(4, 10, 128)) y <- x |> layer_conv_1d(32, 3, activation='relu') shape(y)
## shape(4, 8, 32)
See Also
Other convolutional layers: 
layer_conv_1d_transpose() 
layer_conv_2d() 
layer_conv_2d_transpose() 
layer_conv_3d() 
layer_conv_3d_transpose() 
layer_depthwise_conv_1d() 
layer_depthwise_conv_2d() 
layer_separable_conv_1d() 
layer_separable_conv_2d() 
Other layers: 
Layer() 
layer_activation() 
layer_activation_elu() 
layer_activation_leaky_relu() 
layer_activation_parametric_relu() 
layer_activation_relu() 
layer_activation_softmax() 
layer_activity_regularization() 
layer_add() 
layer_additive_attention() 
layer_alpha_dropout() 
layer_attention() 
layer_average() 
layer_average_pooling_1d() 
layer_average_pooling_2d() 
layer_average_pooling_3d() 
layer_batch_normalization() 
layer_bidirectional() 
layer_category_encoding() 
layer_center_crop() 
layer_concatenate() 
layer_conv_1d_transpose() 
layer_conv_2d() 
layer_conv_2d_transpose() 
layer_conv_3d() 
layer_conv_3d_transpose() 
layer_conv_lstm_1d() 
layer_conv_lstm_2d() 
layer_conv_lstm_3d() 
layer_cropping_1d() 
layer_cropping_2d() 
layer_cropping_3d() 
layer_dense() 
layer_depthwise_conv_1d() 
layer_depthwise_conv_2d() 
layer_discretization() 
layer_dot() 
layer_dropout() 
layer_einsum_dense() 
layer_embedding() 
layer_feature_space() 
layer_flatten() 
layer_flax_module_wrapper() 
layer_gaussian_dropout() 
layer_gaussian_noise() 
layer_global_average_pooling_1d() 
layer_global_average_pooling_2d() 
layer_global_average_pooling_3d() 
layer_global_max_pooling_1d() 
layer_global_max_pooling_2d() 
layer_global_max_pooling_3d() 
layer_group_normalization() 
layer_group_query_attention() 
layer_gru() 
layer_hashed_crossing() 
layer_hashing() 
layer_identity() 
layer_integer_lookup() 
layer_jax_model_wrapper() 
layer_lambda() 
layer_layer_normalization() 
layer_lstm() 
layer_masking() 
layer_max_pooling_1d() 
layer_max_pooling_2d() 
layer_max_pooling_3d() 
layer_maximum() 
layer_mel_spectrogram() 
layer_minimum() 
layer_multi_head_attention() 
layer_multiply() 
layer_normalization() 
layer_permute() 
layer_random_brightness() 
layer_random_contrast() 
layer_random_crop() 
layer_random_flip() 
layer_random_rotation() 
layer_random_translation() 
layer_random_zoom() 
layer_repeat_vector() 
layer_rescaling() 
layer_reshape() 
layer_resizing() 
layer_rnn() 
layer_separable_conv_1d() 
layer_separable_conv_2d() 
layer_simple_rnn() 
layer_spatial_dropout_1d() 
layer_spatial_dropout_2d() 
layer_spatial_dropout_3d() 
layer_spectral_normalization() 
layer_string_lookup() 
layer_subtract() 
layer_text_vectorization() 
layer_tfsm() 
layer_time_distributed() 
layer_torch_module_wrapper() 
layer_unit_normalization() 
layer_upsampling_1d() 
layer_upsampling_2d() 
layer_upsampling_3d() 
layer_zero_padding_1d() 
layer_zero_padding_2d() 
layer_zero_padding_3d() 
rnn_cell_gru() 
rnn_cell_lstm() 
rnn_cell_simple() 
rnn_cells_stack()