layer_category_encoding {keras3} | R Documentation |
A preprocessing layer which encodes integer features.
Description
This layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known,
use layer_integer_lookup()
instead.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
Usage
layer_category_encoding(
object,
num_tokens = NULL,
output_mode = "multi_hot",
sparse = FALSE,
...
)
Arguments
object |
Object to compose the layer with. A tensor, array, or sequential model. |
num_tokens |
The total number of tokens the layer should support. All
inputs to the layer must integers in the range |
output_mode |
Specification for the output of the layer.
Values can be |
sparse |
Whether to return a sparse tensor; for backends that support sparse tensors. |
... |
For forward/backward compatability. |
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.-
NULL
or missing, then aLayer
instance is returned.
Examples
One-hot encoding data
layer <- layer_category_encoding(num_tokens = 4, output_mode = "one_hot") x <- op_array(c(3, 2, 0, 1), "int32") layer(x)
## tf.Tensor( ## [[0. 0. 0. 1.] ## [0. 0. 1. 0.] ## [1. 0. 0. 0.] ## [0. 1. 0. 0.]], shape=(4, 4), dtype=float32)
Multi-hot encoding data
layer <- layer_category_encoding(num_tokens = 4, output_mode = "multi_hot") x <- op_array(rbind(c(0, 1), c(0, 0), c(1, 2), c(3, 1)), "int32") layer(x)
## tf.Tensor( ## [[1. 1. 0. 0.] ## [1. 0. 0. 0.] ## [0. 1. 1. 0.] ## [0. 1. 0. 1.]], shape=(4, 4), dtype=float32)
Using weighted inputs in "count"
mode
layer <- layer_category_encoding(num_tokens = 4, output_mode = "count") count_weights <- op_array(rbind(c(.1, .2), c(.1, .1), c(.2, .3), c(.4, .2))) x <- op_array(rbind(c(0, 1), c(0, 0), c(1, 2), c(3, 1)), "int32") layer(x, count_weights = count_weights) # array([[01, 02, 0. , 0. ], # [02, 0. , 0. , 0. ], # [0. , 02, 03, 0. ], # [0. , 02, 0. , 04]]>
Call Arguments
-
inputs
: A 1D or 2D tensor of integer inputs. -
count_weights
: A tensor in the same shape asinputs
indicating the weight for each sample value when summing up incount
mode. Not used in"multi_hot"
or"one_hot"
modes.
See Also
Other categorical features preprocessing layers:
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_string_lookup()
Other preprocessing layers:
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()