layer_batch_normalization {keras3}R Documentation

Layer that normalizes its inputs.

Description

Batch normalization applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1.

Importantly, batch normalization works differently during training and during inference.

During training (i.e. when using fit() or when calling the layer/model with the argument training = TRUE), the layer normalizes its output using the mean and standard deviation of the current batch of inputs. That is to say, for each channel being normalized, the layer returns gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta, where:

During inference (i.e. when using evaluate() or predict() or when calling the layer/model with the argument training = FALSE (which is the default), the layer normalizes its output using a moving average of the mean and standard deviation of the batches it has seen during training. That is to say, it returns gamma * (batch - self$moving_mean) / sqrt(self$moving_var+epsilon) + beta.

self$moving_mean and self$moving_var are non-trainable variables that are updated each time the layer in called in training mode, as such:

As such, the layer will only normalize its inputs during inference after having been trained on data that has similar statistics as the inference data.

About setting layer$trainable <- FALSE on a BatchNormalization layer:

The meaning of setting layer$trainable <- FALSE is to freeze the layer, i.e. its internal state will not change during training: its trainable weights will not be updated during fit() or train_on_batch(), and its state updates will not be run.

Usually, this does not necessarily mean that the layer is run in inference mode (which is normally controlled by the training argument that can be passed when calling a layer). "Frozen state" and "inference mode" are two separate concepts.

However, in the case of the BatchNormalization layer, setting trainable <- FALSE on the layer means that the layer will be subsequently run in inference mode (meaning that it will use the moving mean and the moving variance to normalize the current batch, rather than using the mean and variance of the current batch).

Note that:

Usage

layer_batch_normalization(
  object,
  axis = -1L,
  momentum = 0.99,
  epsilon = 0.001,
  center = TRUE,
  scale = TRUE,
  beta_initializer = "zeros",
  gamma_initializer = "ones",
  moving_mean_initializer = "zeros",
  moving_variance_initializer = "ones",
  beta_regularizer = NULL,
  gamma_regularizer = NULL,
  beta_constraint = NULL,
  gamma_constraint = NULL,
  synchronized = FALSE,
  ...
)

Arguments

object

Object to compose the layer with. A tensor, array, or sequential model.

axis

Integer, the axis that should be normalized (typically the features axis). For instance, after a Conv2D layer with data_format = "channels_first", use axis = 2.

momentum

Momentum for the moving average.

epsilon

Small float added to variance to avoid dividing by zero.

center

If TRUE, add offset of beta to normalized tensor. If FALSE, beta is ignored.

scale

If TRUE, multiply by gamma. If FALSE, gamma is not used. When the next layer is linear this can be disabled since the scaling will be done by the next layer.

beta_initializer

Initializer for the beta weight.

gamma_initializer

Initializer for the gamma weight.

moving_mean_initializer

Initializer for the moving mean.

moving_variance_initializer

Initializer for the moving variance.

beta_regularizer

Optional regularizer for the beta weight.

gamma_regularizer

Optional regularizer for the gamma weight.

beta_constraint

Optional constraint for the beta weight.

gamma_constraint

Optional constraint for the gamma weight.

synchronized

Only applicable with the TensorFlow backend. If TRUE, synchronizes the global batch statistics (mean and variance) for the layer across all devices at each training step in a distributed training strategy. If FALSE, each replica uses its own local batch statistics.

...

Base layer keyword arguments (e.g. name and dtype).

Value

The return value depends on the value provided for the first argument. If object is:

Call Arguments

Reference

See Also

Other normalization layers:
layer_group_normalization()
layer_layer_normalization()
layer_spectral_normalization()
layer_unit_normalization()

Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()


[Package keras3 version 0.2.0 Index]