initializer_random_normal {keras3} | R Documentation |
Random normal initializer.
Description
Draws samples from a normal distribution for given parameters.
Usage
initializer_random_normal(mean = 0, stddev = 0.05, seed = NULL)
Arguments
mean |
A numeric scalar. Mean of the random values to generate. |
stddev |
A numeric scalar. Standard deviation of the random values to generate. |
seed |
An integer or instance of
|
Value
An Initializer
instance that can be passed to layer or variable
constructors, or called directly with a shape
to return a Tensor.
Examples
# Standalone usage: initializer <- initializer_random_normal(mean = 0.0, stddev = 1.0) values <- initializer(shape = c(2, 2))
# Usage in a Keras layer: initializer <- initializer_random_normal(mean = 0.0, stddev = 1.0) layer <- layer_dense(units = 3, kernel_initializer = initializer)
See Also
Other random initializers:
initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_lecun_normal()
initializer_lecun_uniform()
initializer_orthogonal()
initializer_random_uniform()
initializer_truncated_normal()
initializer_variance_scaling()
Other initializers:
initializer_constant()
initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_identity()
initializer_lecun_normal()
initializer_lecun_uniform()
initializer_ones()
initializer_orthogonal()
initializer_random_uniform()
initializer_truncated_normal()
initializer_variance_scaling()
initializer_zeros()