initializer_lecun_normal {keras3} | R Documentation |
Lecun normal initializer.
Description
Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.
Draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(1 / fan_in)
where fan_in
is the number of input units in
the weight tensor.
Usage
initializer_lecun_normal(seed = NULL)
Arguments
seed |
An integer or instance of
|
Value
An Initializer
instance that can be passed to layer or variable
constructors, or called directly with a shape
to return a Tensor.
Examples
# Standalone usage: initializer <- initializer_lecun_normal() values <- initializer(shape = c(2, 2))
# Usage in a Keras layer: initializer <- initializer_lecun_normal() layer <- layer_dense(units = 3, kernel_initializer = initializer)
Reference
See Also
Other random initializers:
initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_lecun_uniform()
initializer_orthogonal()
initializer_random_normal()
initializer_random_uniform()
initializer_truncated_normal()
initializer_variance_scaling()
Other initializers:
initializer_constant()
initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_identity()
initializer_lecun_uniform()
initializer_ones()
initializer_orthogonal()
initializer_random_normal()
initializer_random_uniform()
initializer_truncated_normal()
initializer_variance_scaling()
initializer_zeros()