application_densenet169 {keras3} | R Documentation |
Instantiates the Densenet169 architecture.
Description
Instantiates the Densenet169 architecture.
Usage
application_densenet169(
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000L,
classifier_activation = "softmax",
name = "densenet169"
)
Arguments
include_top |
whether to include the fully-connected layer at the top of the network. |
weights |
one of |
input_tensor |
optional Keras tensor
(i.e. output of |
input_shape |
optional shape tuple, only to be specified
if |
pooling |
Optional pooling mode for feature extraction
when
|
classes |
optional number of classes to classify images
into, only to be specified if |
classifier_activation |
A |
name |
The name of the model (string). |
Value
A Keras model instance.
Reference
-
Densely Connected Convolutional Networks (CVPR 2017)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at ~/.keras/keras.json
.
Note
Each Keras Application expects a specific kind of input preprocessing.
For DenseNet, call application_preprocess_inputs()
on your inputs before passing them to the model.