| metric_recall {keras} | R Documentation |
Computes the recall of the predictions with respect to the labels
Description
Computes the recall of the predictions with respect to the labels
Usage
metric_recall(
...,
thresholds = NULL,
top_k = NULL,
class_id = NULL,
name = NULL,
dtype = NULL
)
Arguments
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
thresholds |
(Optional) A float value or a list of float
threshold values in |
top_k |
(Optional) Unset by default. An int value specifying the top-k predictions to consider when calculating recall. |
class_id |
(Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Details
This metric creates two local variables, true_positives and
false_negatives, that are used to compute the recall. This value is
ultimately returned as recall, an idempotent operation that simply divides
true_positives by the sum of true_positives and false_negatives.
If sample_weight is NULL, weights default to 1. Use sample_weight of 0
to mask values.
If top_k is set, recall will be computed as how often on average a class
among the labels of a batch entry is in the top-k predictions.
If class_id is specified, we calculate recall by considering only the
entries in the batch for which class_id is in the label, and computing the
fraction of them for which class_id is above the threshold and/or in the
top-k predictions.
Value
A (subclassed) Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage.
See Also
Other metrics:
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_accuracy(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_negatives(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_relative_error(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_poisson(),
metric_precision(),
metric_precision_at_recall(),
metric_recall_at_precision(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives(),
metric_true_positives()