| metric_mean {keras} | R Documentation |
Computes the (weighted) mean of the given values
Description
Computes the (weighted) mean of the given values
Usage
metric_mean(..., name = "mean", dtype = NULL)
Arguments
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Details
For example, if values is c(1, 3, 5, 7) then the mean is 4.
If the weights were specified as c(1, 1, 0, 0) then the mean would be 2.
This metric creates two variables, total and count that are used to
compute the average of values. This average is ultimately returned as mean
which is an idempotent operation that simply divides total by count.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Value
A (subclassed) Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage.
Note
Unlike most other metrics, this only takes a single tensor as input to update state.
Example usage with compile():
model$add_metric(metric_mean(name='mean_1')(outputs)) model %>% compile(optimizer='sgd', loss='mse')
Example standalone usage:
m <- metric_mean() m$update_state(c(1, 3, 5, 7)) m$result() m$reset_state() m$update_state(c(1, 3, 5, 7), sample_weight=c(1, 1, 0, 0)) m$result() as.numeric(m$result())
See Also
Other metrics:
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_accuracy(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_negatives(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_relative_error(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_poisson(),
metric_precision(),
metric_precision_at_recall(),
metric_recall(),
metric_recall_at_precision(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives(),
metric_true_positives()