| metric_false_negatives {keras} | R Documentation |
Calculates the number of false negatives
Description
Calculates the number of false negatives
Usage
metric_false_negatives(..., thresholds = NULL, name = NULL, dtype = NULL)
Arguments
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
thresholds |
(Optional) Defaults to 0.5. A float value or a
list of float threshold values in |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Details
If sample_weight is given, calculates the sum of the weights of
false negatives. This metric creates one local variable, accumulator
that is used to keep track of the number of false negatives.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Value
A (subclassed) Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage.
See Also
Other metrics:
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_accuracy(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_relative_error(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_poisson(),
metric_precision(),
metric_precision_at_recall(),
metric_recall(),
metric_recall_at_precision(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives(),
metric_true_positives()