metric_cosine_similarity {keras} | R Documentation |
Computes the cosine similarity between the labels and predictions
Description
Computes the cosine similarity between the labels and predictions
Usage
metric_cosine_similarity(
...,
axis = -1L,
name = "cosine_similarity",
dtype = NULL
)
Arguments
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
axis |
(Optional) (1-based) Defaults to -1. The dimension along which the metric is computed. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Details
cosine similarity = (a . b) / ||a|| ||b||
See: Cosine Similarity.
This metric keeps the average cosine similarity between predictions
and
labels
over a stream of data.
Value
A (subclassed) Metric
instance that can be passed directly to
compile(metrics = )
, or used as a standalone object. See ?Metric
for
example usage.
Note
If you want to compute the cosine_similarity for each case in a
mini-batch you can use loss_cosine_similarity()
.
See Also
Other metrics:
custom_metric()
,
metric_accuracy()
,
metric_auc()
,
metric_binary_accuracy()
,
metric_binary_crossentropy()
,
metric_categorical_accuracy()
,
metric_categorical_crossentropy()
,
metric_categorical_hinge()
,
metric_false_negatives()
,
metric_false_positives()
,
metric_hinge()
,
metric_kullback_leibler_divergence()
,
metric_logcosh_error()
,
metric_mean()
,
metric_mean_absolute_error()
,
metric_mean_absolute_percentage_error()
,
metric_mean_iou()
,
metric_mean_relative_error()
,
metric_mean_squared_error()
,
metric_mean_squared_logarithmic_error()
,
metric_mean_tensor()
,
metric_mean_wrapper()
,
metric_poisson()
,
metric_precision()
,
metric_precision_at_recall()
,
metric_recall()
,
metric_recall_at_precision()
,
metric_root_mean_squared_error()
,
metric_sensitivity_at_specificity()
,
metric_sparse_categorical_accuracy()
,
metric_sparse_categorical_crossentropy()
,
metric_sparse_top_k_categorical_accuracy()
,
metric_specificity_at_sensitivity()
,
metric_squared_hinge()
,
metric_sum()
,
metric_top_k_categorical_accuracy()
,
metric_true_negatives()
,
metric_true_positives()