metric_categorical_accuracy {keras} | R Documentation |
Calculates how often predictions match one-hot labels
Description
Calculates how often predictions match one-hot labels
Usage
metric_categorical_accuracy(
y_true,
y_pred,
...,
name = "categorical_accuracy",
dtype = NULL
)
Arguments
y_true |
Tensor of true targets. |
y_pred |
Tensor of predicted targets. |
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Details
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
This metric creates two local variables, total
and count
that are used to
compute the frequency with which y_pred
matches y_true
. This frequency is
ultimately returned as categorical accuracy
: an idempotent operation that
simply divides total
by count
.
y_pred
and y_true
should be passed in as vectors of probabilities, rather
than as labels. If necessary, use tf.one_hot
to expand y_true
as a vector.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
Value
If y_true
and y_pred
are missing, a (subclassed) Metric
instance is returned. The Metric
object can be passed directly to
compile(metrics = )
or used as a standalone object. See ?Metric
for
example usage.
Alternatively, if called with y_true
and y_pred
arguments, then the
computed case-wise values for the mini-batch are returned directly.
See Also
Other metrics:
custom_metric()
,
metric_accuracy()
,
metric_auc()
,
metric_binary_accuracy()
,
metric_binary_crossentropy()
,
metric_categorical_crossentropy()
,
metric_categorical_hinge()
,
metric_cosine_similarity()
,
metric_false_negatives()
,
metric_false_positives()
,
metric_hinge()
,
metric_kullback_leibler_divergence()
,
metric_logcosh_error()
,
metric_mean()
,
metric_mean_absolute_error()
,
metric_mean_absolute_percentage_error()
,
metric_mean_iou()
,
metric_mean_relative_error()
,
metric_mean_squared_error()
,
metric_mean_squared_logarithmic_error()
,
metric_mean_tensor()
,
metric_mean_wrapper()
,
metric_poisson()
,
metric_precision()
,
metric_precision_at_recall()
,
metric_recall()
,
metric_recall_at_precision()
,
metric_root_mean_squared_error()
,
metric_sensitivity_at_specificity()
,
metric_sparse_categorical_accuracy()
,
metric_sparse_categorical_crossentropy()
,
metric_sparse_top_k_categorical_accuracy()
,
metric_specificity_at_sensitivity()
,
metric_squared_hinge()
,
metric_sum()
,
metric_top_k_categorical_accuracy()
,
metric_true_negatives()
,
metric_true_positives()