metric_binary_crossentropy {keras} | R Documentation |
Computes the crossentropy metric between the labels and predictions
Description
Computes the crossentropy metric between the labels and predictions
Usage
metric_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
name = "binary_crossentropy",
dtype = NULL
)
Arguments
y_true |
Tensor of true targets. |
y_pred |
Tensor of predicted targets. |
from_logits |
(Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution. |
label_smoothing |
(Optional) Float in |
axis |
(Optional) (1-based) Defaults to -1. The dimension along which the metric is computed. |
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Details
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
Value
If y_true
and y_pred
are missing, a (subclassed) Metric
instance is returned. The Metric
object can be passed directly to
compile(metrics = )
or used as a standalone object. See ?Metric
for
example usage.
Alternatively, if called with y_true
and y_pred
arguments, then the
computed case-wise values for the mini-batch are returned directly.
See Also
Other metrics:
custom_metric()
,
metric_accuracy()
,
metric_auc()
,
metric_binary_accuracy()
,
metric_categorical_accuracy()
,
metric_categorical_crossentropy()
,
metric_categorical_hinge()
,
metric_cosine_similarity()
,
metric_false_negatives()
,
metric_false_positives()
,
metric_hinge()
,
metric_kullback_leibler_divergence()
,
metric_logcosh_error()
,
metric_mean()
,
metric_mean_absolute_error()
,
metric_mean_absolute_percentage_error()
,
metric_mean_iou()
,
metric_mean_relative_error()
,
metric_mean_squared_error()
,
metric_mean_squared_logarithmic_error()
,
metric_mean_tensor()
,
metric_mean_wrapper()
,
metric_poisson()
,
metric_precision()
,
metric_precision_at_recall()
,
metric_recall()
,
metric_recall_at_precision()
,
metric_root_mean_squared_error()
,
metric_sensitivity_at_specificity()
,
metric_sparse_categorical_accuracy()
,
metric_sparse_categorical_crossentropy()
,
metric_sparse_top_k_categorical_accuracy()
,
metric_specificity_at_sensitivity()
,
metric_squared_hinge()
,
metric_sum()
,
metric_top_k_categorical_accuracy()
,
metric_true_negatives()
,
metric_true_positives()