| layer_zero_padding_2d {keras} | R Documentation |
Zero-padding layer for 2D input (e.g. picture).
Description
This layer can add rows and columns of zeros at the top, bottom, left and right side of an image tensor.
Usage
layer_zero_padding_2d(
object,
padding = c(1L, 1L),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object |
What to compose the new
|
padding |
int, or list of 2 ints, or list of 2 lists of 2 ints.
|
data_format |
A string, one of |
batch_size |
Fixed batch size for layer |
name |
An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. |
trainable |
Whether the layer weights will be updated during training. |
weights |
Initial weights for layer. |
Input shape
4D tensor with shape:
If
data_formatis"channels_last":(batch, rows, cols, channels)If
data_formatis"channels_first":(batch, channels, rows, cols)
Output shape
4D tensor with shape:
If
data_formatis"channels_last":(batch, padded_rows, padded_cols, channels)If
data_formatis"channels_first":(batch, channels, padded_rows, padded_cols)
See Also
Other convolutional layers:
layer_conv_1d(),
layer_conv_1d_transpose(),
layer_conv_2d(),
layer_conv_2d_transpose(),
layer_conv_3d(),
layer_conv_3d_transpose(),
layer_conv_lstm_2d(),
layer_cropping_1d(),
layer_cropping_2d(),
layer_cropping_3d(),
layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(),
layer_separable_conv_1d(),
layer_separable_conv_2d(),
layer_upsampling_1d(),
layer_upsampling_2d(),
layer_upsampling_3d(),
layer_zero_padding_1d(),
layer_zero_padding_3d()