layer_resizing {keras} | R Documentation |
Image resizing layer
Description
Image resizing layer
Usage
layer_resizing(
object,
height,
width,
interpolation = "bilinear",
crop_to_aspect_ratio = FALSE,
...
)
Arguments
object |
What to compose the new
|
height |
Integer, the height of the output shape. |
width |
Integer, the width of the output shape. |
interpolation |
String, the interpolation method. Defaults to |
crop_to_aspect_ratio |
If TRUE, resize the images without aspect
ratio distortion. When the original aspect ratio differs from the target
aspect ratio, the output image will be cropped so as to return the largest
possible window in the image (of size |
... |
standard layer arguments. |
Details
Resize the batched image input to target height and width. The input should
be a 4D (batched) or 3D (unbatched) tensor in "channels_last"
format.
See Also
-
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Resizing
-
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing
Other image preprocessing layers:
layer_center_crop()
,
layer_rescaling()
Other preprocessing layers:
layer_category_encoding()
,
layer_center_crop()
,
layer_discretization()
,
layer_hashing()
,
layer_integer_lookup()
,
layer_normalization()
,
layer_random_brightness()
,
layer_random_contrast()
,
layer_random_crop()
,
layer_random_flip()
,
layer_random_height()
,
layer_random_rotation()
,
layer_random_translation()
,
layer_random_width()
,
layer_random_zoom()
,
layer_rescaling()
,
layer_string_lookup()
,
layer_text_vectorization()