layer_embedding {keras} | R Documentation |
Turns positive integers (indexes) into dense vectors of fixed size
Description
Turns positive integers (indexes) into dense vectors of fixed size
Usage
layer_embedding(
object,
input_dim,
output_dim,
embeddings_initializer = "uniform",
embeddings_regularizer = NULL,
activity_regularizer = NULL,
embeddings_constraint = NULL,
mask_zero = FALSE,
input_length = NULL,
sparse = FALSE,
...
)
Arguments
object |
Layer or Model object |
input_dim |
Integer. Size of the vocabulary, i.e. maximum integer index + 1. |
output_dim |
Integer. Dimension of the dense embedding. |
embeddings_initializer |
Initializer for the |
embeddings_regularizer , activity_regularizer |
Regularizer function applied to
the |
embeddings_constraint |
Constraint function applied to
the |
mask_zero |
Boolean, whether or not the input value 0 is a special
"padding" value that should be masked out. This is useful when using
recurrent layers which may take variable length input. If this is
|
input_length |
Length of input sequences, when it is constant.
This argument is required if you are going to connect
|
sparse |
If TRUE, calling this layer returns a |
... |
standard layer arguments. |
Details
For example, list(4L, 20L) -> list(c(0.25, 0.1), c(0.6, -0.2))
.
This layer can only be used on positive integer inputs of a fixed range. The
layer_text_vectorization()
, layer_string_lookup()
,
and layer_integer_lookup()
preprocessing layers can help prepare
inputs for an Embedding
layer.
This layer accepts tf.Tensor
, tf.RaggedTensor
and tf.SparseTensor
input.
Input shape
2D tensor with shape: (batch_size, sequence_length)
.
Output shape
3D tensor with shape: (batch_size, sequence_length, output_dim)
.