| layer_cropping_2d {keras} | R Documentation |
Cropping layer for 2D input (e.g. picture).
Description
It crops along spatial dimensions, i.e. width and height.
Usage
layer_cropping_2d(
object,
cropping = list(c(0L, 0L), c(0L, 0L)),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object |
What to compose the new
|
cropping |
int, or list of 2 ints, or list of 2 lists of 2 ints.
|
data_format |
A string, one of |
batch_size |
Fixed batch size for layer |
name |
An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. |
trainable |
Whether the layer weights will be updated during training. |
weights |
Initial weights for layer. |
Input shape
4D tensor with shape:
If
data_formatis"channels_last":(batch, rows, cols, channels)If
data_formatis"channels_first":(batch, channels, rows, cols)
Output shape
4D tensor with shape:
If
data_formatis"channels_last":(batch, cropped_rows, cropped_cols, channels)If
data_formatis"channels_first":(batch, channels, cropped_rows, cropped_cols)
See Also
Other convolutional layers:
layer_conv_1d(),
layer_conv_1d_transpose(),
layer_conv_2d(),
layer_conv_2d_transpose(),
layer_conv_3d(),
layer_conv_3d_transpose(),
layer_conv_lstm_2d(),
layer_cropping_1d(),
layer_cropping_3d(),
layer_depthwise_conv_1d(),
layer_depthwise_conv_2d(),
layer_separable_conv_1d(),
layer_separable_conv_2d(),
layer_upsampling_1d(),
layer_upsampling_2d(),
layer_upsampling_3d(),
layer_zero_padding_1d(),
layer_zero_padding_2d(),
layer_zero_padding_3d()