keras_model_sequential {keras} | R Documentation |
Keras Model composed of a linear stack of layers
Description
Keras Model composed of a linear stack of layers
Usage
keras_model_sequential(layers = NULL, name = NULL, ...)
Arguments
layers |
List of layers to add to the model |
name |
Name of model |
... |
Arguments passed on to
|
Note
If any arguments are provided to ...
, then the sequential model is
initialized with a InputLayer
instance. If not, then the first layer passed
to a Sequential model should have a defined input shape. What that means is
that it should have received an input_shape
or batch_input_shape
argument, or for some type of layers (recurrent, Dense...) an input_dim
argument.
See Also
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()
,
train_on_batch()
Examples
## Not run:
library(keras)
model <- keras_model_sequential()
model %>%
layer_dense(units = 32, input_shape = c(784)) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')
model %>% compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
# alternative way to provide input shape
model <- keras_model_sequential(input_shape = c(784)) %>%
layer_dense(units = 32) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')
## End(Not run)