application_densenet {keras} | R Documentation |
Instantiates the DenseNet architecture.
Description
Instantiates the DenseNet architecture.
Usage
application_densenet(
blocks,
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000
)
application_densenet121(
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000
)
application_densenet169(
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000
)
application_densenet201(
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000
)
densenet_preprocess_input(x, data_format = NULL)
Arguments
blocks |
numbers of building blocks for the four dense layers. |
include_top |
whether to include the fully-connected layer at the top of the network. |
weights |
one of |
input_tensor |
optional Keras tensor (i.e. output of |
input_shape |
optional shape list, only to be specified if |
pooling |
optional pooling mode for feature extraction when
|
classes |
optional number of classes to classify images into, only to be
specified if |
x |
a 3D or 4D array consists of RGB values within |
data_format |
data format of the image tensor. |
Details
Optionally loads weights pre-trained
on ImageNet. Note that when using TensorFlow,
for best performance you should set
image_data_format='channels_last'
in your Keras config
at ~/.keras/keras.json.
The model and the weights are compatible with TensorFlow, Theano, and CNTK. The data format convention used by the model is the one specified in your Keras config file.