kernel.fun {kedd} | R Documentation |
Derivatives of Kernel Function
Description
The (S3) generic function kernel.fun
computes the
r'th derivative for kernel density.
Usage
kernel.fun(x, ...)
## Default S3 method:
kernel.fun(x = NULL, deriv.order = 0, kernel = c("gaussian","epanechnikov",
"uniform", "triangular", "triweight", "tricube",
"biweight", "cosine", "silverman"), ...)
Arguments
x |
points at which the derivative of kernel function is to be evaluated. |
deriv.order |
derivative order (scalar). |
kernel |
a character string giving the smoothing kernel to be used,
with default |
... |
further arguments for (non-default) methods. |
Details
We give a short survey of some kernels functions K(x;r)
; where r
is derivative order,
Gaussian:
K(x;\infty) =\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^{2}}{2}\right)1_{]-\infty,+\infty[}
Epanechnikov:
K(x;2)=\frac{3}{4}(1-x^{2})1_{(|x| \leq 1)}
uniform (rectangular):
K(x;0)=\frac{1}{2}1_{(|x| \leq 1)}
triangular:
K(x;1)=(1-|x|)1_{(|x| \leq 1)}
triweight:
K(x;6)=\frac{35}{32}(1-x^{2})^{3} 1_{(|x| \leq 1)}
tricube:
K(x;9)=\frac{70}{81}(1-|x|^{3})^{3} 1_{(|x| \leq 1)}
biweight:
K(x;4)=\frac{15}{16}(1-x^{2})^{2} 1_{(|x| \leq 1)}
cosine:
K(x;\infty)=\frac{\pi}{4}\cos\left(\frac{\pi}{2}x\right) 1_{(|x| \leq 1)}
Silverman:
K(x;r \bmod 8)=\frac{1}{2}\exp\left(-\frac{|x|}{\sqrt{2}}\right)\sin\left(\frac{|x|}{\sqrt{2}}+\frac{\pi}{4}\right)1_{]-\infty,+\infty[}
The r'th derivative for kernel function K(x)
is written:
K^{(r)}(x) = \frac{d^{r}}{d x^{r}} K(x)
for r = 0, 1, 2, \dots
The r'th derivative of the Gaussian kernel K(x)
is given by:
K^{(r)}(x) = (-1)^{r} H_{r}(x) K(x)
where H_{r}(x)
is the r'th Hermite polynomial. This polynomials
are set of orthogonal polynomials, for more details see, hermite.h.polynomials
in package orthopolynom.
Value
kernel |
name of kernel to use. |
deriv.order |
the derivative order to use. |
x |
the n coordinates of the points where the derivative of kernel function is evaluated. |
kx |
the kernel derivative values. |
Author(s)
Arsalane Chouaib Guidoum acguidoum@usthb.dz
References
Jones, M. C. (1992). Differences and derivatives in kernel estimation. Metrika, 39, 335–340.
Olver, F. W., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press, New York, USA.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC. London.
See Also
plot.kernel.fun
, deriv
and D
in
package "stats" for symbolic and algorithmic derivatives of simple expressions.
Examples
kernels <- eval(formals(kernel.fun.default)$kernel)
kernels
## gaussian
kernel.fun(x = 0,kernel=kernels[1],deriv.order=0)
kernel.fun(x = 0,kernel=kernels[1],deriv.order=1)
## silverman
kernel.fun(x = 0,kernel=kernels[9],deriv.order=0)
kernel.fun(x = 0,kernel=kernels[9],deriv.order=1)