h.ccv {kedd} | R Documentation |
Complete Cross-Validation for Bandwidth Selection
Description
The (S3) generic function h.ccv
computes the complete
cross-validation bandwidth selector of r'th derivative of
kernel density estimator one-dimensional.
Usage
h.ccv(x, ...)
## Default S3 method:
h.ccv(x, deriv.order = 0, lower = 0.1 * hos, upper = hos,
tol = 0.1 * lower, kernel = c("gaussian", "triweight",
"tricube", "biweight", "cosine"), ...)
Arguments
x |
vector of data values. |
deriv.order |
derivative order (scalar). |
lower , upper |
range over which to minimize. The default is
almost always satisfactory. |
tol |
the convergence tolerance for |
kernel |
a character string giving the smoothing kernel to be used, with default
|
... |
further arguments for (non-default) methods. |
Details
h.ccv
complete cross-validation implements for choosing the bandwidth h
of a r'th derivative kernel density estimator.
Jones and Kappenman (1991) proposed a so-called complete cross-validation (CCV)
in kernel density estimator. This method can be extended to the estimation of
derivative of the density, basing our estimate of integrated squared density
derivative (Peter and Marron 1987) on the \bar{\theta}_{r}(h)
's,
we get the following, start from R\left(\hat{f}_{h}^{(r)}\right) - \bar{\theta}_{r}(h)
as an estimate
of MISE. Thus, \hat{h}^{(r)}_{CCV}
, say, is the h
that minimises:
CCV(h;r)=R\left(\hat{f}_{h}^{(r)}\right)-\bar{\theta}_{r}(h)+\frac{1}{2}\mu_{2}(K) h^{2} \bar{\theta}_{r+1}(h)+\frac{1}{24}\left(6\mu_{2}^{2}(K) -\delta(K)\right)h^{4}\bar{\theta}_{r+2}(h)
with
R\left(\hat{f}_{h}^{(r)}\right) = \int \left(\hat{f}_{h}^{(r)}(x)\right)^{2} dx = \frac{R\left(K^{(r)}\right)}{nh^{2r+1}} + \frac{(-1)^{r}}{n (n-1) h^{2r+1}} \sum_{i=1}^{n}\sum_{j=1;j \neq i}^{n} K^{(r)} \ast K^{(r)} \left(\frac{X_{j}-X_{i}}{h}\right)
and
\bar{\theta}_{r}(h)= \frac{(-1)^r}{n(n-1) h^{2r+1}} \sum_{i=1}^{n} \sum_{j=1;j \neq i}^{n} K^{(2r)} \left(\frac{X_{j}-X_{i}}{h}\right)
and K^{(r)} \ast K^{(r)} (x)
is the convolution of the r'th derivative kernel function K^{(r)}(x)
(see kernel.conv
and kernel.fun
); R\left(K^{(r)}\right) = \int_{R} K^{(r)}(x)^{2} dx
and
\mu_{2}(K) = \int_{R}x^{2} K(x) dx
, \delta(K) = \int_{R}x^{4} K(x) dx
.
The range over which to minimize is hos
Oversmoothing bandwidth, the default is almost always
satisfactory. See George and Scott (1985), George (1990), Scott (1992, pp 165), Wand and Jones (1995, pp 61).
Value
x |
data points - same as input. |
data.name |
the deparsed name of the |
n |
the sample size after elimination of missing values. |
kernel |
name of kernel to use |
deriv.order |
the derivative order to use. |
h |
value of bandwidth parameter. |
min.ccv |
the minimal CCV value. |
Author(s)
Arsalane Chouaib Guidoum acguidoum@usthb.dz
References
Jones, M. C. and Kappenman, R. F. (1991). On a class of kernel density estimate bandwidth selectors. Scandinavian Journal of Statistics, 19, 337–349.
Peter, H. and Marron, J.S. (1987). Estimation of integrated squared density derivatives. Statistics and Probability Letters, 6, 109–115.
See Also
Examples
## Derivative order = 0
h.ccv(kurtotic,deriv.order = 0)
## Derivative order = 1
h.ccv(kurtotic,deriv.order = 1)