| kdevine {kdevine} | R Documentation |
Kernel density estimatior based on simplified vine copulas
Description
Implements the vine-copula based estimator of Nagler and Czado (2016). The
marginal densities are estimated by kde1d, the vine copula
density by kdevinecop. Discrete variables are convoluted with
the uniform distribution (see, Nagler, 2017). If a variable should be treated
as discrete, declare it as ordered(). Factors are expanded into binary
dummy codes.
Usage
kdevine(x, mult_1d = NULL, xmin = NULL, xmax = NULL, copula.type = "kde", ...)
Arguments
x |
( |
mult_1d |
numeric; all bandwidhts for marginal kernel density estimation
are multiplied with |
xmin |
numeric vector of length d; see |
xmax |
numeric vector of length d; see |
copula.type |
either |
... |
further arguments passed to |
Value
An object of class kdevine.
References
Nagler, T., Czado, C. (2016) Evading the curse of
dimensionality in nonparametric density estimation with simplified vine
copulas. Journal of Multivariate Analysis 151, 69-89
(doi:10.1016/j.jmva.2016.07.003)
Nagler, T. (2017). A generic approach to nonparametric function
estimation with mixed data. arXiv:1704.07457
See Also
Examples
# load data
data(wdbc, package = "kdecopula")
# estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))
# evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)
# plot simulated data
pairs(rkdevine(nrow(wdbc), fit))