Kernel Smoothing for Bivariate Copula Densities


[Up] [Top]

Documentation for package ‘kdecopula’ version 0.9.2

Help Pages

kdecopula-package Kernel Smoothing for Bivariate Copula Densities
bw_bern Bandwidth selection for the Bernstein copula estimator
bw_beta Bandwidth selection for the beta kernel estimator
bw_mr Bandwidth selection for the mirror-reflection estimator
bw_t Bandwidth selection for the transformation kernel estimator
bw_tll Bandwidth selection for the transformation local likelihood estimator
bw_tll_nn Nearest-neighbor bandwidth selection for the transformation local likelihood estimator
bw_tt_cv Nearest-neighbor bandwidth selection for the tapered transformation estimator
bw_tt_pi Nearest-neighbor bandwidth selection for the tapered transformation estimator
contour.kdecopula Plotting 'kdecopula' objects
dep_measures Dependence measures of a 'kdecop()' fit
dkdecop Working with 'kdecopula' objects
fitted.kdecopula Extract fitted values from a 'kdecop()' fits.
hkdecop H-function and inverse of a 'kdecop()' fit
kdecop Bivariate kernel copula density estimation
kdecopula Kernel Smoothing for Bivariate Copula Densities
logLik.kdecopula Log-Likelihood of a 'kdecopula' object
pkdecop Working with 'kdecopula' objects
plot.kdecopula Plotting 'kdecopula' objects
predict.kdecopula Prediction method for 'kdecop()' fits
rkdecop Working with 'kdecopula' objects
simulate.kdecopula Simulate data from a 'kdecop()' fit.
wdbc Wisconsin Diagnostic Breast Cancer (WDBC)