kdecopula-package |
Kernel Smoothing for Bivariate Copula Densities |
bw_bern |
Bandwidth selection for the Bernstein copula estimator |
bw_beta |
Bandwidth selection for the beta kernel estimator |
bw_mr |
Bandwidth selection for the mirror-reflection estimator |
bw_t |
Bandwidth selection for the transformation kernel estimator |
bw_tll |
Bandwidth selection for the transformation local likelihood estimator |
bw_tll_nn |
Nearest-neighbor bandwidth selection for the transformation local likelihood estimator |
bw_tt_cv |
Nearest-neighbor bandwidth selection for the tapered transformation estimator |
bw_tt_pi |
Nearest-neighbor bandwidth selection for the tapered transformation estimator |
contour.kdecopula |
Plotting 'kdecopula' objects |
dep_measures |
Dependence measures of a 'kdecop()' fit |
dkdecop |
Working with 'kdecopula' objects |
fitted.kdecopula |
Extract fitted values from a 'kdecop()' fits. |
hkdecop |
H-function and inverse of a 'kdecop()' fit |
kdecop |
Bivariate kernel copula density estimation |
kdecopula |
Kernel Smoothing for Bivariate Copula Densities |
logLik.kdecopula |
Log-Likelihood of a 'kdecopula' object |
pkdecop |
Working with 'kdecopula' objects |
plot.kdecopula |
Plotting 'kdecopula' objects |
predict.kdecopula |
Prediction method for 'kdecop()' fits |
rkdecop |
Working with 'kdecopula' objects |
simulate.kdecopula |
Simulate data from a 'kdecop()' fit. |
wdbc |
Wisconsin Diagnostic Breast Cancer (WDBC) |