predict.kcmeans {kcmeans} | R Documentation |
Prediction Method for the K-Conditional-Means Estimator.
Description
Prediction method for the K-Conditional-Means estimator.
Usage
## S3 method for class 'kcmeans'
predict(object, newdata, clusters = FALSE, ...)
Arguments
object |
An object of class |
newdata |
A (sparse) feature matrix where the first column corresponds to the categorical predictor. |
clusters |
A boolean indicating whether estimated clusters should be returned. |
... |
Currently unused. |
Value
A numerical vector with predicted values (if clusters = FALSE
)
or predicted clusters (if clusters = FALSE
).
References
Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021
Examples
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Calculate in-sample predictions
fitted_values <- predict(kcmeans_fit, cbind(Z, X))
# Print sample share of estimated clusters
clusters <- predict(kcmeans_fit, cbind(Z, X), clusters = TRUE)
table(clusters)
[Package kcmeans version 0.1.0 Index]