| kcmeans {kcmeans} | R Documentation |
K-Conditional-Means Estimator
Description
Implementation of the K-Conditional-Means estimator.
Usage
kcmeans(y, X, which_is_cat = 1, K = 2)
Arguments
y |
The outcome variable, a numerical vector. |
X |
A (sparse) feature matrix where one column is the categorical predictor. |
which_is_cat |
An integer indicating which column of |
K |
The number of support points, an integer greater than 2. |
Value
kcmeans returns an object of S3 class kcmeans. An
object of class kcmeans is a list containing the following
components:
cluster_mapA matrix that characterizes the estimated predictor of the residualized outcome
\tilde{Y} \equiv Y - X_{2:}^\top \hat{\pi}. The first columnxdenotes the value of the categorical variable that corresponds to the unrestricted sample meanmean_xof\tilde{Y}, the sample sharep_x, the estimated clustercluster_x, and the estimated restricted sample meanmean_xKof\tilde{Y}with justKsupport points.mean_yThe unconditional sample mean of
\tilde{Y}.piThe best linear prediction coefficients of
YonXcorresponding to the non-categorical predictorsX_{2:}.which_is_cat,KPassthrough of user-provided arguments. See above for details.
References
Wang H and Song M (2011). "Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming." The R Journal 3(2), 29–33.
Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021
Examples
# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Print the estimated support points of the categorical predictor
print(unique(kcmeans_fit$cluster_map[, "mean_xK"]))