mini.dist.capa.ident {kappalab} | R Documentation |
Minimum distance capacity identification
Description
Creates an object of class Mobius.capacity
using a
minimum distance principle. More precisely, this function determines,
if it exists, the closest capacity to a user-given game compatible
with a set of linear constraints. The distance can be chosen among
three quadratic distances (see help and references hereafter). The
problem is solved using strictly convex quadratic programming.
Usage
mini.dist.capa.ident(a, k, distance = "Choquet.coefficients",
A.Choquet.preorder = NULL, A.Shapley.preorder = NULL,
A.Shapley.interval = NULL, A.interaction.preorder = NULL,
A.interaction.interval = NULL, A.inter.additive.partition = NULL,
epsilon = 1e-6)
Arguments
a |
Object of class |
k |
Object of class |
distance |
Object of class |
A.Choquet.preorder |
Object of class |
A.Shapley.preorder |
Object of class |
A.Shapley.interval |
Object of class |
A.interaction.preorder |
Object of class |
A.interaction.interval |
Object of class |
A.inter.additive.partition |
Object of class |
epsilon |
Object of class |
Details
The quadratic program is solved using the solve.QP
function of
the quadprog package.
Value
The function returns a list structured as follows:
solution |
Object of class |
value |
Value of the objective function. |
iterations |
Information returned by |
iact |
Information returned by |
References
K. Fujimoto and T. Murofushi (2000) Hierarchical decomposition of the Choquet integral, in: Fuzzy Measures and Integrals: Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno Eds, Physica Verlag, pages 95-103.
I. Kojadinovic (2006), Quadratic objective functions for capacity and bi-capacity identification and approximation, A Quarterly Journal of Operations Research (40R), in press.
See Also
Mobius.capacity-class
,
lin.prog.capa.ident
,
mini.var.capa.ident
,
least.squares.capa.ident
,
heuristic.ls.capa.ident
,
ls.sorting.capa.ident
,
entropy.capa.ident
.
Examples
## some alternatives
a <- c(18,11,18,11,11)
b <- c(18,18,11,11,11)
c <- c(11,11,18,18,11)
d <- c(18,11,11,11,18)
e <- c(11,11,18,11,18)
## preference threshold relative
## to the preorder of the alternatives
delta.C <- 1
## corresponding Choquet preorder constraint matrix
Acp <- rbind(c(d,a,delta.C),
c(a,e,delta.C),
c(e,b,delta.C),
c(b,c,delta.C)
)
## a Shapley preorder constraint matrix
## Sh(1) - Sh(2) >= -delta.S
## Sh(2) - Sh(1) >= -delta.S
## Sh(3) - Sh(4) >= -delta.S
## Sh(4) - Sh(3) >= -delta.S
## i.e. criteria 1,2 and criteria 3,4
## should have the same global importances
delta.S <- 0.01
Asp <- rbind(c(1,2,-delta.S),
c(2,1,-delta.S),
c(3,4,-delta.S),
c(4,3,-delta.S)
)
## a Shapley interval constraint matrix
## 0.3 <= Sh(1) <= 0.9
Asi <- rbind(c(1,0.3,0.9))
## an interaction preorder constraint matrix
## such that I(12) = I(34)
delta.I <- 0.01
Aip <- rbind(c(1,2,3,4,-delta.I),
c(3,4,1,2,-delta.I))
## an interaction interval constraint matrix
## i.e. -0.20 <= I(12) <= -0.15
Aii <- rbind(c(1,2,-0.2,-0.15))
## the capacity that we want to approach
x <- runif(31)
for (i in 2:31)
x[i] <- x[i] + x[i-1]
mu <- normalize(capacity(c(0,x)))
## and its Mobius transform
a.mu <- Mobius(mu)
## some basic checks
## Not run:
mini.dist.capa.ident(a.mu,5)
mini.dist.capa.ident(a.mu,5,"binary.alternatives")
mini.dist.capa.ident(a.mu,5,"global.scores")
mini.dist.capa.ident(a.mu,3)
mini.dist.capa.ident(a.mu,3,"binary.alternatives")
mini.dist.capa.ident(a.mu,3,"global.scores")
## End(Not run)
## a minimum distance 2-additive solution
min.dist <- mini.dist.capa.ident(a.mu,2,"binary.alternatives",
A.Choquet.preorder = Acp)
m <- min.dist$solution
m
## a minimum distance 3-additive more constrained solution
min.dist2 <- mini.dist.capa.ident(a.mu,3,"global.scores",
A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp)
m <- min.dist2$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),
c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))
Shapley.value(m)
## Not run:
## a minimum distance 5-additive more constrained solution
min.dist3 <- mini.dist.capa.ident(a.mu,5,
A.Choquet.preorder = Acp,
A.Shapley.preorder = Asp,
A.Shapley.interval = Asi,
A.interaction.preorder = Aip,
A.interaction.interval = Aii)
m <- min.dist3$solution
m
rbind(c(a,mean(a),Choquet.integral(m,a)),
c(b,mean(b),Choquet.integral(m,b)),
c(c,mean(c),Choquet.integral(m,c)),
c(d,mean(d),Choquet.integral(m,d)),
c(e,mean(e),Choquet.integral(m,e)))
summary(m)
## End(Not run)