game-class {kappalab} | R Documentation |
Class "game"
Description
Class representing a game, i.e. a set function vanishing at the empty set (also called non monotonic fuzzy measure).
Objects from the Class
Objects can be created by calls to the function game
.
Slots
n
:Object of class
numeric
of length 1 equal to the number of elements of the set on which the game is defined.subsets
:Object of class
numeric
of length2^n
containing the power set of the underlying set in "natural" order. The subsets are coded as integers.data
:Object of class
numeric
of length2^n
containing the coefficients of the game in binary order. We necessarily havedata[1] = 0
.
Extends
Class set.func
, directly.
Class superclass.set.func
, by class set.func
.
Methods
- as.card.game
signature(object = "game")
- Choquet.integral
signature(object = "game", f = "numeric")
- Mobius
signature(object = "game")
- Sipos.integral
signature(object = "game", f = "numeric")
- Sugeno.integral
signature(object = "game", f = "numeric")
- pdf.Choquet.unif
signature(object = "game", f = "numeric")
- cdf.Choquet.unif
signature(object = "game", f = "numeric")
- expect.Choquet.unif
signature(object = "game")
- sd.Choquet.unif
signature(object = "game")
- expect.Choquet.norm
signature(object = "game")
- sd.Choquet.norm
signature(object = "game")
See Also
game
,
as.card.game-methods
,
Choquet.integral-methods
,
Mobius-methods
,
Sipos.integral-methods
,
Sugeno.integral-methods
,
pdf.Choquet.unif-methods
,
cdf.Choquet.unif-methods
,
expect.Choquet.unif-methods
,
sd.Choquet.unif-methods
,
expect.Choquet.norm-methods
,
sd.Choquet.norm-methods
.
Examples
## a game (which is a capacity)
mu <- game(c(0,rep(1,15)))
## the attributes of the object
mu@n
mu@data
mu@subsets
## a conversion
as.card.game(mu)
## a transformation
Mobius(mu)
## let us check ...
zeta(Mobius(mu))
## integral calculations
f <- c(0.2,0.3,0.1,0.7)
Choquet.integral(mu,f)
Sugeno.integral(mu,f)
f <- c(0.2,-0.3,0.1,-0.7)
Sipos.integral(mu,f)