oBellPol {kStatistics} | R Documentation |
Ordinary Bell polynomials
Description
The function generates a complete or a partial ordinary Bell polynomial.
Usage
oBellPol(n = 1, m = 0)
Arguments
n |
integer, the degree of the polynomial |
m |
integer, the fixed degree of each monomial in the polynomial |
Details
Faa di Bruno's formula gives the coefficients of the exponential formal power series obtained
from the composition f[g()]
of the exponential formal power series f
with g
. The
partial ordinary Bell polynomials B[n,m]
can be expressed
in the terms of the partial exponential Bell polynomials B(n,m)(y[1],...,y[n-m+1])
using the
following formula:
B[n,m](y[1],...,y[n-m+1])=k!/n!B(n,m)(y[1],...,y[n-m+1]). |
The complete ordinary Bell polynomials are given by B[n]=B[n,1]+B[n,2]+...B[n,n]
, where
B[n,m]
is the partial ordinary Bell polynomial of order (n,m)
for m
from 1
to n
.
Value
string |
the expression of the polynomial |
Warning
The value of the first parameter is the same as the MFB
function in the univariate with
univariate composition.
Note
This function calls the MFB
function in the kStatistics
package.
Author(s)
Elvira Di Nardo elvira.dinardo@unito.it,
Giuseppe Guarino giuseppe.guarino@rete.basilicata.it
References
C.A. Charalambides (2002) Enumerative Combinatoris, Chapman & Haii/CRC.
E. Di Nardo, G. Guarino, D. Senato (2011) A new algorithm for computing the multivariate Faa di Bruno's formula. Appl. Math. Comp. 217, 6286-6295. (download from https://arxiv.org/abs/1012.6008)
See Also
Examples
# Return the complete ordinary Bell Polynomial for n=5, that is
# (y1^5) + 20(y1^3)(y2) + 30(y1)(y2^2) + 60(y1^2)(y3) + 120(y2)(y3) + 120(y1)(y4) + 120(y5)
oBellPol(5)
#
# OR (same output)
#
oBellPol(5,0)
# Return the partial ordinary Bell polynomial for n=5 and m=3, that is
# 30(y1)(y2^2) + 60(y1^2)(y3)
oBellPol(5,3)