gpPart {kStatistics} | R Documentation |
General partition polynomial
Description
The function returns a general partition polynomial.
Usage
gpPart(n = 0)
Arguments
n |
integer |
Details
Faa di Bruno's formula gives the coefficients of the exponential formal power series composition
f[g()]
obtained from the composition of the exponential formal power series f
with g
.
General partition polynomials in the variables y[1],...,y[n]
are recovered from the Faa di Bruno's
formula (output of the MFB
function) in the case "composition of univariate
f
with univariate g
" by setting f[i]=ai
and g[i]=y[i]
, for i
from 1
to n
.
Value
string |
the expression of the polynomial |
Warning
The value of the first parameter is the same as the MFB
function
in the univariate with univariate composition.
Note
This function calls the MFB
function in the kStatistics
package.
Author(s)
Elvira Di Nardo elvira.dinardo@unito.it,
Giuseppe Guarino giuseppe.guarino@rete.basilicata.it
References
C.A. Charalambides (2002) Enumerative Combinatoris, Chapman & Haii/CRC.
E. Di Nardo, G. Guarino, D. Senato (2011) A new algorithm for computing the multivariate Faa di Bruno's formula. Appl. Math. Comp. 217, 6286–6295. (download from https://arxiv.org/abs/1012.6008)
See Also
Examples
# Return the general partition polynomial G[a1,a2; y1,y2], that is a2(y1^2) + a1(y2)
gpPart(2)
# Return the general partition polynomial G[a1,a2,a3,a4,a5; y1,y2,y3,y4,y5], that is
# a5(y1^5) + 10a4(y1^3)(y2) + 15a3(y1)(y2^2) + 10a3(y1^2)(y3) + 10a2(y2)(y3) + 5a2(y1)(y4)
# + a1(y5)
gpPart(5)