e_eBellPol {kStatistics} | R Documentation |
Evaluation of exponential Bell polynomials
Description
The function evaluates a complete or a partial exponential Bell polynomial
(output of the eBellPol
function) when its variables are substituted with
numerical values.
Usage
e_eBellPol(n=1,m=0,v=c(rep(1,n)))
Arguments
n |
integer, the degree of the polynomial |
m |
integer, the fixed degree of each monomial in the polynomial |
v |
vector, the numerical values in place of the variables of the polynomial |
Details
The eBellPol
function generates a complete or a partial exponential Bell polynomial
in the variables y[1],..., y[n-m+1]
. The e_eBellPol
function computes the value assumed
by this polynomial when its variables are substituted with numerical values.
Value
numerical value |
the value assumed by the polynomial. |
Warning
By default, the function returns the Stirling numbers of second kind.
Note
This function calls the eBellPol
function in the kStatistics
package.
Author(s)
Elvira Di Nardo elvira.dinardo@unito.it,
Giuseppe Guarino giuseppe.guarino@rete.basilicata.it
References
C.A. Charalambides (2002) Enumerative Combinatoris, Chapman & Haii/CRC.
E. Di Nardo, G. Guarino, D. Senato (2008) An unifying framework for k-statistics, polykays and their generalizations. Bernoulli. 14(2), 440-468. (download from https://arxiv.org/pdf/math/0607623.pdf)
E. Di Nardo, G. Guarino, D. Senato (2008) Symbolic computation of moments of sampling distributions. Comp. Stat. Data Analysis. 52(11), 4909-4922. (download from https://arxiv.org/abs/0806.0129)
E. Di Nardo, G. Guarino, D. Senato (2011) A new algorithm for computing the multivariate Faa di Bruno's formula. Appl. Math. Comp. 217, 6286–6295. (download from https://arxiv.org/abs/1012.6008)
See Also
Examples
# Return S(5,3) = 25 (where S=Stirling number of second kind)
e_eBellPol(5,3)
#
# OR (same output)
#
e_eBellPol(5,3,c(1,1,1,1,1))
# Return B5=52 (where B5 is the 5-th Bell number)
e_eBellPol(5)
#
# OR (same output)
#
e_eBellPol(5,0)
#
# OR (same output)
#
e_eBellPol(5,0,c(1,1,1,1,1))
# Return s(5,3) = 35 (where s=Stirling number of first kind)
e_eBellPol(5,3,c(1,-1,2,-6,24))