cum2mom {kStatistics} | R Documentation |
Cumulants in terms of moments
Description
The function computes a simple or a multivariate cumulant in terms of simple or multivariate moments.
Usage
cum2mom(n = 1)
Arguments
n |
integer or vector of integers |
Details
Faa di Bruno's formula (the MFB
function) gives the coefficients of the exponential formal power series
f[g()]
where f
and g
are exponential formal power series too. Simple cumulants
are expressed in terms of simple moments using the Faa di Bruno's formula obtained from the MFB
function in the case
"composition of univariate f
with univariate g
" with f[i]=(-1)^(i-1)*(i-1)!, g[i]=m[i]
for i
from 1 to n
and m[i]
moments. Multivariate cumulants are expressed in terms
of multivariate moments using the Faa di Bruno's formula obtained from the MFB
function in the case "composition
of univariate f
with multivariate g
". In such a case the coefficients of g
are the multivariate moments.
Value
string |
the expression of the cumulant in terms of moments |
Warning
The value of the first parameter is the same as the MFB
function in the univariate with
univariate case composition and in the univariate with multivariate case composition.
Note
This function calls the MFB
function in the kStatistics
package.
Author(s)
Elvira Di Nardo elvira.dinardo@unito.it,
Giuseppe Guarino giuseppe.guarino@rete.basilicata.it
References
E. Di Nardo, G. Guarino, D. Senato (2008) An unifying framework for k-statistics, polykays and their generalizations. Bernoulli. 14(2), 440-468. (download from https://arxiv.org/pdf/math/0607623.pdf)
E. Di Nardo E., G. Guarino, D. Senato (2011) A new algorithm for computing the multivariate Faa di Bruno's formula. Appl. Math. Comp. 217, 6286–6295. (download from https://arxiv.org/abs/1012.6008)
P. McCullagh, J. Kolassa (2009) Scholarpedia, 4(3):4699. http://www.scholarpedia.org/article/Cumulants
See Also
Examples
# Return the simple cumulant k[5] in terms of the simple moments m[1],..., m[5].
cum2mom(5)
# Return the multivariate cumulant k[3,1] in terms of the multivariate moments m[i,j] for
# i=0,1,2,3 and j=0,1.
cum2mom(c(3,1))