kNNvs {kNNvs} | R Documentation |
k Nearest Neighbors with Grid Search Variable Selection
Description
k Nearest Neighbors with Grid Search Variable Selection
Usage
kNNvs(
train_x,
test_x,
cl_train,
cl_test,
k,
model = c("regression", "classifiation")
)
Arguments
train_x |
matrix or data frame of training set |
test_x |
matrix or data frame of test set |
cl_train |
factor of true classifications of training set |
cl_test |
factor of true classifications of test set |
k |
the number of neighbors |
model |
regression or classifiation |
Details
kNNvs is simply use add one and then compare acc to pick the best variable set for the knn model
Value
ACC or MSE, best variable combination, estimate value yhat
Examples
{
data(iris3)
train_x <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test_x <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl_train<- cl_test<- factor(c(rep("s",25), rep("c",25), rep("v",25)))
k<- 5
# cl_test is not null
mymodel<-kNNvs(train_x,test_x,cl_train,cl_test,k,model="classifiation")
mymodel
# cl_test is null
mymodel<-kNNvs(train_x,test_x,cl_train,cl_test=NULL,k,model="classifiation")
mymodel
}
[Package kNNvs version 0.1.0 Index]