Multinom {kDGLM} | R Documentation |
Multinom outcome for kDGLM models
Description
Creates an outcome with Multinomial distribution with the chosen parameters.
Usage
Multinom(p, data, offset = as.matrix(data)^0, base.class = NULL)
Arguments
p |
character: a vector with the name of the linear predictor associated with the probability of each category (except the base one, which is assumed to be the last). |
data |
vector: Values of the observed data. |
offset |
vector: The offset at each observation. Must have the same shape as data. |
base.class |
character or integer: The name or index of the base class. Default is to use the last column of data. |
Details
For evaluating the posterior parameters, we use the method proposed in Alves et al. (2024).
For the details about the implementation see dos Santos et al. (2024).
Value
A object of the class dlm_distr
References
Mariane
Branco Alves, Helio
S. Migon, RaĆra Marotta, Junior,
Silvaneo
Vieira dos Santos (2024).
“k-parametric Dynamic Generalized Linear Models: a sequential approach via Information Geometry.”
2201.05387.
Junior,
Silvaneo
Vieira dos Santos, Mariane
Branco Alves, Helio
S. Migon (2024).
“kDGLM: an R package for Bayesian analysis of Dynamic Generialized Linear Models.”
See Also
Other auxiliary functions for a creating outcomes:
Gamma()
,
Normal()
,
Poisson()
,
summary.dlm_distr()
Examples
structure <- (
polynomial_block(p = 1, order = 2, D = 0.95) +
harmonic_block(p = 1, period = 12, D = 0.975) +
noise_block(p = 1, R1 = 0.1) +
regression_block(p = chickenPox$date >= as.Date("2013-09-01"))
# Vaccine was introduced in September of 2013
) * 4
outcome <- Multinom(p = structure$pred.names, data = chickenPox[, c(2, 3, 4, 6, 5)])
fitted.data <- fit_model(structure, chickenPox = outcome)
summary(fitted.data)
plot(fitted.data, plot.pkg = "base")