r_to_n {jordan} | R Documentation |
Sizes of Matrix-based Jordan algebras
Description
Given the number of rows in a (matrix-based) Jordan object, return the size of the underlying associative matrix algebra
Usage
r_to_n_rsm(r)
r_to_n_chm(r)
r_to_n_qhm(r)
r_to_n_albert(r=27)
n_to_r_rsm(n)
n_to_r_chm(n)
n_to_r_qhm(n)
n_to_r_albert(n=3)
Arguments
n |
Integer, underlying associative algebra being matrices of
size |
r |
Integer, number of rows of independent representation of a matrix-based jordan object |
Details
These functions are here for consistency, and the albert
ones for
completeness.
For the record, they are:
Real symmetric matrices,
rsm
,r=n(n+1)/2
,n=(\sqrt{1+4r}-1)/2
Complex Hermitian matrices,
chm
,r=n^2
,n=\sqrt{r}
Quaternion Hermitian matrices,
qhm
,r=n(2n-1)
,n=(1+\sqrt{1+8r})/4
Albert algebras,
r=27
,n=3
Value
Return non-negative integers
Note
I have not been entirely consistent in my use of these functions.
Author(s)
Robin K. S. Hankin
Examples
r_to_n_qhm(nrow(rqhm()))
[Package jordan version 1.0-6 Index]