jordan {jordan} | R Documentation |
Create jordan objects
Description
Creation methods for jordan objects
Arguments
M |
A matrix with columns representing independent entries in a matrix-based Jordan algebra |
a , V |
Scalar and vector components of a spin factor |
Details
The functions documented here are the creation methods for the five types of jordan algebra.
quaternion_herm_matrix()
complex_herm_matrix()
real_symmetric_matrix()
albert()
spin()
(to generate quick “get you going” Jordan algebra objects, use
the rrsm()
family of functions, documented at random.Rd
).
Value
Return jordans or Boolean as appropriate
Author(s)
Robin K. S. Hankin
See Also
Examples
A <- real_symmetric_matrix(1:10) # vector of length 1
as.1matrix(A) # in matrix form
complex_herm_matrix(cbind(1:25,2:26))
quaternion_herm_matrix(1:15)
albert(1:27)
spin(-6,cbind(1:12,12:1))
x <- rrsm() ; y <- rrsm() ; z <- rrsm() # also works with the other Jordans
x*(y*z) - (x*y)*z # Jordan algebra is not associative...
(x*y)*(x*x) - x*(y*(x*x)) # but satisfies the Jordan identity
[Package jordan version 1.0-6 Index]