GeminiB {jointMeanCov} | R Documentation |
Estimate Row-Row Covariance Structure Using Gemini
Description
GeminiB estimates the row-row covariance, inverse covariance, correlation, and inverse correlation matrices using Gemini. For identifiability, the covariance factors A and B are scaled so that A has trace m, where m is the number of columns of X, A is the column-column covariance matrix, and B is the row-row covariance matrix.
Usage
GeminiB(X, rowpen, penalize.diagonal = FALSE)
Arguments
X |
Data matrix, of dimensions n by m. |
rowpen |
Glasso penalty parameter. |
penalize.diagonal |
Logical value indicating whether to penalize the off-diagonal entries of the correlation matrix. Default is FALSE. |
Value
corr.B.hat |
estimated correlation matrix. |
corr.B.hat.inv |
estimated inverse correlation matrix. |
B.hat |
estimated covariance matrix. |
B.hat.inv |
estimated inverse covariance matrix. |
Examples
n1 <- 5
n2 <- 5
n <- n1 + n2
m <- 20
X <- matrix(rnorm(n * m), nrow=n, ncol=m)
rowpen <- sqrt(log(m) / n)
out <- GeminiB(X, rowpen, penalize.diagonal=FALSE)
# Display the estimated correlation matrix rounded to two
# decimal places.
print(round(out$corr.B.hat, 2))
[Package jointMeanCov version 0.1.0 Index]