F.prediction {joint.Cox} | R Documentation |
Dynamic prediction of death
Description
Dynamic prediction of death using a joint frailty-copula model. Probability of death between t and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1, Z2). This function is a simpler version of F.windows. The guide for using this function shall be explained by Emura et al. (2019).
Usage
F.prediction(time, widths, X, Z1, Z2, beta1, beta2, eta, theta, alpha,
g, h, xi1, xi3, Fplot = TRUE)
Arguments
time |
prediction time (=t) |
widths |
length of window (=w) |
X |
time of tumour progression; if tumour progression does not occur before time t, one can set an arbitrary value X greater than t |
Z1 |
a vector of covariates for progression |
Z2 |
a vector of covariates for death |
beta1 |
a vector of regression coefficients for progression |
beta2 |
a vector of regression coefficients for death |
eta |
frailty variance |
theta |
copula parameter |
alpha |
parameter related to frailty; usually alpha=1 |
g |
parameters related to the baseline hazard for progression |
h |
parameters related to the baseline hazard for death |
xi1 |
lower bound for time-to-event |
xi3 |
upper bound for time-to-death |
Fplot |
if FALSE, the plot is not shown |
Details
Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1 and Z2).
Value
time |
t |
widths |
w |
X |
X |
F |
F(t,t+w|X=x, Z1, Z2) or F(t,t+w|X>t, Z1, Z2) |
Author(s)
Takeshi Emura
References
Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model, Stat Methods Med Res 27(9):2842-58
Emura T, Michimae H, Matsui S (2019-), A clinician's guide for dynamic risk prediction of death using an R package joint.Cox, submitted for publication.
Examples
w=c(0,0.5,1,1.5,2)
par(mfrow=c(1,2))
F.prediction(time=1,X=0.8,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,
alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)
F.prediction(time=1,X=1.5,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,
alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)