logRegMulti {jmv} | R Documentation |
Multinomial Logistic Regression
Description
Multinomial Logistic Regression
Usage
logRegMulti(data, dep, covs = NULL, factors = NULL,
blocks = list(list()), refLevels = NULL, modelTest = FALSE,
dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"),
omni = FALSE, ci = FALSE, ciWidth = 95, OR = FALSE,
ciOR = FALSE, ciWidthOR = 95, emMeans = list(list()),
ciEmm = TRUE, ciWidthEmm = 95, emmPlots = TRUE,
emmTables = FALSE, emmWeights = TRUE)
Arguments
data |
the data as a data frame |
dep |
a string naming the dependent variable from |
covs |
a vector of strings naming the covariates from |
factors |
a vector of strings naming the fixed factors from
|
blocks |
a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list |
refLevels |
a list of lists specifying reference levels of the dependent variable and all the factors |
modelTest |
|
dev |
|
aic |
|
bic |
|
pseudoR2 |
one or more of |
omni |
|
ci |
|
ciWidth |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
OR |
|
ciOR |
|
ciWidthOR |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
emMeans |
a list of lists specifying the variables for which the estimated marginal means need to be calculate. Supports up to three variables per term. |
ciEmm |
|
ciWidthEmm |
a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means |
emmPlots |
|
emmTables |
|
emmWeights |
|
Value
A results object containing:
results$modelFit | a table | ||||
results$modelComp | a table | ||||
results$models | an array of model specific results | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$modelFit$asDF
as.data.frame(results$modelFit)
Examples
data('birthwt', package='MASS')
dat <- data.frame(
race = factor(birthwt$race),
age = birthwt$age,
low = factor(birthwt$low))
logRegMulti(data = dat, dep = race,
covs = age, factors = low,
blocks = list(list("age", "low")),
refLevels = list(
list(var="race", ref="1"),
list(var="low", ref="0")))
#
# MULTINOMIAL LOGISTIC REGRESSION
#
# Model Fit Measures
# --------------------------------------
# Model Deviance AIC R²-McF
# --------------------------------------
# 1 360 372 0.0333
# --------------------------------------
#
#
# MODEL SPECIFIC RESULTS
#
# MODEL 1
#
# Model Coefficients
# ---------------------------------------------------------------
# race Predictor Estimate SE Z p
# ---------------------------------------------------------------
# 2 - 1 Intercept 0.8155 1.1186 0.729 0.466
# age -0.1038 0.0487 -2.131 0.033
# low:
# 1 – 0 0.7527 0.4700 1.601 0.109
# 3 - 1 Intercept 1.0123 0.7798 1.298 0.194
# age -0.0663 0.0324 -2.047 0.041
# low:
# 1 – 0 0.5677 0.3522 1.612 0.107
# ---------------------------------------------------------------
#
#