cfa {jmv} | R Documentation |
Confirmatory Factor Analysis
Description
Confirmatory Factor Analysis
Usage
cfa(data, factors = list(list(label = "Factor 1", vars = list())),
resCov, miss = "fiml", constrain = "facVar", estTest = TRUE,
ci = FALSE, ciWidth = 95, stdEst = FALSE, factCovEst = TRUE,
factInterceptEst = FALSE, resCovEst = FALSE,
resInterceptEst = FALSE, fitMeasures = list("cfi", "tli", "rmsea"),
modelTest = TRUE, pathDiagram = FALSE, corRes = FALSE,
hlCorRes = 0.1, mi = FALSE, hlMI = 3)
Arguments
data |
the data as a data frame |
factors |
a list containing named lists that define the |
resCov |
a list of lists specifying the residual covariances that need to be estimated |
miss |
|
constrain |
|
estTest |
|
ci |
|
ciWidth |
a number between 50 and 99.9 (default: 95) specifying the
confidence interval width that is used as |
stdEst |
|
factCovEst |
|
factInterceptEst |
|
resCovEst |
|
resInterceptEst |
|
fitMeasures |
one or more of |
modelTest |
|
pathDiagram |
|
corRes |
|
hlCorRes |
a number (default: 0.1), highlight values in the
|
mi |
|
hlMI |
a number (default: 3), highlight values in the
|
Value
A results object containing:
results$factorLoadings | a table containing the factor loadings | ||||
results$factorEst$factorCov | a table containing factor covariances estimates | ||||
results$factorEst$factorIntercept | a table containing factor intercept estimates | ||||
results$resEst$resCov | a table containing residual covariances estimates | ||||
results$resEst$resIntercept | a table containing residual intercept estimates | ||||
results$modelFit$test | a table containing the chi-square test for exact fit | ||||
results$modelFit$fitMeasures | a table containing fit measures | ||||
results$modelPerformance$corRes | a table containing residuals for the observed correlation matrix | ||||
results$modelPerformance$modIndices | a group | ||||
results$pathDiagram | an image containing the model path diagram | ||||
results$modelSyntax | the lavaan syntax used to fit the model | ||||
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$factorLoadings$asDF
as.data.frame(results$factorLoadings)
Examples
data <- lavaan::HolzingerSwineford1939
jmv::cfa(
data = data,
factors = list(
list(label="Visual", vars=c("x1", "x2", "x3")),
list(label="Textual", vars=c("x4", "x5", "x6")),
list(label="Speed", vars=c("x7", "x8", "x9"))),
resCov = NULL)
#
# CONFIRMATORY FACTOR ANALYSIS
#
# Factor Loadings
# -----------------------------------------------------------------
# Factor Indicator Estimate SE Z p
# -----------------------------------------------------------------
# Visual x1 0.900 0.0832 10.81 < .001
# x2 0.498 0.0808 6.16 < .001
# x3 0.656 0.0776 8.46 < .001
# Textual x4 0.990 0.0567 17.46 < .001
# x5 1.102 0.0626 17.60 < .001
# x6 0.917 0.0538 17.05 < .001
# Speed x7 0.619 0.0743 8.34 < .001
# x8 0.731 0.0755 9.68 < .001
# x9 0.670 0.0775 8.64 < .001
# -----------------------------------------------------------------
#
#
# FACTOR ESTIMATES
#
# Factor Covariances
# --------------------------------------------------------------
# Estimate SE Z p
# --------------------------------------------------------------
# Visual Visual 1.000 a
# Textual 0.459 0.0635 7.22 < .001
# Speed 0.471 0.0862 5.46 < .001
# Textual Textual 1.000 a
# Speed 0.283 0.0715 3.96 < .001
# Speed Speed 1.000 a
# --------------------------------------------------------------
# a fixed parameter
#
#
# MODEL FIT
#
# Test for Exact Fit
# ------------------------
# X² df p
# ------------------------
# 85.3 24 < .001
# ------------------------
#
#
# Fit Measures
# -----------------------------------------------
# CFI TLI RMSEA Lower Upper
# -----------------------------------------------
# 0.931 0.896 0.0921 0.0714 0.114
# -----------------------------------------------
#