| ANOVA {jmv} | R Documentation | 
ANOVA
Description
The Analysis of Variance (ANOVA) is used to explore the relationship between a continuous dependent variable, and one or more categorical explanatory variables.
Usage
ANOVA(data, dep, factors = NULL, effectSize = NULL,
  modelTest = FALSE, modelTerms = NULL, ss = "3", homo = FALSE,
  norm = FALSE, qq = FALSE, contrasts = NULL, postHoc = NULL,
  postHocCorr = list("tukey"), postHocES = list(),
  postHocEsCi = FALSE, postHocEsCiWidth = 95, emMeans = list(list()),
  emmPlots = TRUE, emmPlotData = FALSE, emmPlotError = "ci",
  emmTables = FALSE, emmWeights = TRUE, ciWidthEmm = 95, formula)
Arguments
| data | the data as a data frame | 
| dep | the dependent variable from  | 
| factors | the explanatory factors in  | 
| effectSize | one or more of  | 
| modelTest | 
 | 
| modelTerms | a formula describing the terms to go into the model (not necessary when providing a formula, see examples) | 
| ss | 
 | 
| homo | 
 | 
| norm | 
 | 
| qq | 
 | 
| contrasts | a list of lists specifying the factor and type of contrast
to use, one of  | 
| postHoc | a formula containing the terms to perform post-hoc tests on (see the examples) | 
| postHocCorr | one or more of  | 
| postHocES | a possible value of  | 
| postHocEsCi | 
 | 
| postHocEsCiWidth | a number between 50 and 99.9 (default: 95), the width of confidence intervals for the post-hoc effect sizes | 
| emMeans | a formula containing the terms to estimate marginal means for (see the examples) | 
| emmPlots | 
 | 
| emmPlotData | 
 | 
| emmPlotError | 
 | 
| emmTables | 
 | 
| emmWeights | 
 | 
| ciWidthEmm | a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means | 
| formula | (optional) the formula to use, see the examples | 
Details
ANOVA assumes that the residuals are normally distributed, and that the variances of all groups are equal. If one is unwilling to assume that the variances are equal, then a Welch's test can be used instead (However, the Welch's test does not support more than one explanatory factor). Alternatively, if one is unwilling to assume that the data is normally distributed, a non-parametric approach (such as Kruskal-Wallis) can be used.
Value
A results object containing:
| results$main | a table of ANOVA results | ||||
| results$model | The underlying aovobject | ||||
| results$assump$homo | a table of homogeneity tests | ||||
| results$assump$norm | a table of normality tests | ||||
| results$assump$qq | a q-q plot | ||||
| results$contrasts | an array of contrasts tables | ||||
| results$postHoc | an array of post-hoc tables | ||||
| results$emm | an array of the estimated marginal means plots + tables | ||||
| results$residsOV | an output | ||||
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$main$asDF
as.data.frame(results$main)
Examples
data('ToothGrowth')
ANOVA(formula = len ~ dose * supp, data = ToothGrowth)
#
#  ANOVA
#
#  ANOVA
#  -----------------------------------------------------------------------
#                 Sum of Squares    df    Mean Square    F        p
#  -----------------------------------------------------------------------
#    dose                   2426     2         1213.2    92.00    < .001
#    supp                    205     1          205.4    15.57    < .001
#    dose:supp               108     2           54.2     4.11     0.022
#    Residuals               712    54           13.2
#  -----------------------------------------------------------------------
#
ANOVA(
    formula = len ~ dose * supp,
    data = ToothGrowth,
    emMeans = ~ supp + dose:supp, # est. marginal means for supp and dose:supp
    emmPlots = TRUE,              # produce plots of those marginal means
    emmTables = TRUE)             # produce tables of those marginal means